skip to main content


Title: Brilliant or Bad: The Gendered Social Construction of Exceptionalism in Early Adolescence

From kindergarten through college, students perceive boys as more intelligent than girls, yet few sociological studies have identified how school processes shape students’ gender status beliefs. Drawing on 2.5 years of longitudinal ethnography and 196 interviews conducted at a racially diverse, public middle school in Los Angeles, this article demonstrates how educators’ differential regulation of boys’ rule-breaking by course level contributed to gender-based differences in students’ perceptions of intelligence. In higher-level courses—where affluent, White, and Asian American students were overrepresented—educators tolerated 6th-grade boys’ rule-breaking, such that boys challenged girls’ opinions and monopolized classroom conversations. By 8th grade, students perceived higher-level boys as more exceptionally intelligent than girls. However, in lower-level courses—where non-affluent Latinx students were overrepresented—educators penalized 6th-grade boys’ rule-breaking, such that boys disengaged from classroom conversations. By 8th grade, lower-level students perceived girls as smarter than boys, but not exceptional. This article also demonstrates how race intersected with gender when shaping students’ perceptions of intelligence, with students associating the most superlatives with affluent White boys’ capabilities. Through this analysis, I develop a new theoretical understanding of how school processes contribute to the gendered social construction of exceptionalism and reproduce social inequalities in early adolescence.

 
more » « less
NSF-PAR ID:
10102819
Author(s) / Creator(s):
 
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
American Sociological Review
Volume:
84
Issue:
3
ISSN:
0003-1224
Page Range / eLocation ID:
p. 369-393
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite limited success in broadening participation in engineering with rural and Appalachian youth, there remain challenges such as misunderstandings around engineering careers, misalignments with youth’s sociocultural background, and other environmental barriers. In addition, middle school science teachers may be unfamiliar with engineering or how to integrate engineering concepts into science lessons. Furthermore, teachers interested in incorporating engineering into their curriculum may not have the time or resources to do so. The result may be single interventions such as a professional development workshop for teachers or a career day for students. However, those are unlikely to cause major change or sustained interest development. To address these challenges, we have undertaken our NSF ITEST project titled, Virginia Tech Partnering with Educators and Engineers in Rural Schools (VT PEERS). Through this project, we sought to improve youth awareness of and preparation for engineering related careers and educational pathways. Utilizing regular engagement in engineering-aligned classroom activities and culturally relevant programming, we sought to spark an interest with some students. In addition, our project involves a partnership with teachers, school districts, and local industry to provide a holistic and, hopefully, sustainable influence. By engaging over time we aspired to promote sustainability beyond this NSF project via increased teacher confidence with engineering related activities, continued integration within their science curriculum, and continued relationships with local industry. From the 2017-2020 school years the project has been in seven schools across three rural counties. Each year a grade level was added; that is, the teachers and students from the first year remained for all three years. Year 1 included eight 6th grade science teachers, year 2 added eight 7th grade science teachers, and year 3 added three 8th grade science teachers and a career and technology teacher. The number of students increased from over 500 students in year 1 to over 2500 in year 3. Our three industry partners have remained active throughout the project. During the third and final year in the classrooms, we focused on the sustainable aspects of the project. In particular, on how the intervention support has evolved each year based on data, support requests from the school divisions, and in scaffolding “ownership” of the engineering activities. Qualitative data were used to support our understanding of teachers’ confidence to incorporate engineering into their lessons plans and how their confidence changed over time. Noteworthy, our student data analysis resulted in an instrument change for the third year; however due to COVID, pre and post data was limited to schools who taught on a semester basis. Throughout the project we have utilized the ITEST STEM Workforce Education Helix model to support a pragmatic approach of our research informing our practice to enable an “iterative relationship between STEM content development and STEM career development activities… within the cultural context of schools, with teachers supported by professional development, and through programs supported by effective partnerships.” For example, over the course of the project, scaffolding from the University leading interventions to teachers leading interventions occurred. 
    more » « less
  2. Developing a strong engineering identity, or sense of belonging in engineering, is essential to pursuing and persisting in the field. Participating in an engineering outreach program is widely seen as an opportunity for youth to ignite and increase an identity as an engineer. As early as elementary school, youth evaluate their experiences, interests, and successes to make choices about possible futures. Although these early experiences and choices influence future participation in, pursuit of, and persistence in engineering, studies of engineering identity development have concentrated on undergraduate and high school learners. This study examines engineering identity development in elementary school students participating in an engineering education outreach program, expanding understanding of early influences on engineering identity formation. This study asks: How do students’ descriptions of their engineering experiences indicate the influence their experiences have on their engineering identity development? This study is embedded in an NSF-funded study of a university-led engineering education outreach program. In this program, pairs of university students facilitated weekly hour-long engineering design challenges in elementary classrooms throughout the school year. At the end of the academic year, we conducted semi-structured interviews with 76 fourth- and fifth-grade students who had participated in the outreach program. The interviewers asked students to rate their enjoyment of and skills in engineering within the context of the program. Iterative qualitative coding was used to elicit emergent patterns in students’ responses and examine them in the context of the Godwin et al (2016) engineering identity framework, using the constructs of interest, performance/competence, and recognition. Responses were then analyzed based on participants’ gender to understand and identify potential differences in influences on engineering identity development. Findings indicate that student talk around interest tended to be more positive, while student talk around performance/competence tended to be more negative, indicating the type of relationships students had with their interest in engineering compared to their perceived skills in doing engineering. However, within the construct of performance/competence, girls used negative language at a higher frequency than boys. Within this construct-based code, there were categories with large variations in positive and negative talk by gender. These gendered patterns provide insight into the differing ways girls and boys interact with engineering and how they start to develop engineering identities. 
    more » « less
  3. This project has been dedicated to advance the way computational thinking is taught to engineering undergraduate students with a multitude of social identities. It is an expectation that with the understanding of the multiple factors that affect computational thinking skills development, students succeed in enculturating to the engineering professional practice. During the third year of this project, the first major result is the conclusion of the validation process of the Engineering Computational Thinking Diagnostic (ECTD) making use of exploratory and confirmatory factor analyses (EFA-CFA). Our validation showed that the ECTD questions cluster in one factor, what we call the computational thinking factor for engineers. Other validation statistical processes (i.e. correlations, regressions, ANOVA and t-tests) proved the predictability potential use of this tool in determining how well prepared students arrive to the engineering classroom and how their prior coding experience can determine their success in introductory coding engineering courses. The second major result is the revelation that the inequities caused by the many forms of privilege that some engineering students benefit from are being exacerbated by the integration of computational thinking into introductory engineering classes. Due to pandemic-related challenges in recruiting a representative sample of participants, the majority of the self-selected participants in our research identify with groups with disproportionately large participation in engineering (specifically White and Asian) and are academically successful in engineering. To respond to this challenge we are seeking to broaden our perspective by seeking participants with failing grades for a final round of data collection, although we are well aware that students in this group are often reluctant to participate in research. The fourth and last major result is related to the position of stress versus Artificial Intelligence (AI) perceptions, both part of the ECTD instrument. The position of stress questions involved perceived difficulty and confidence level after taking the ECTD. The artificial intelligence question asked the perceived impact of AI in students’ future career prospects. Preliminary analysis is suggesting that confidence level is correlated with AI positive perceptions. Although not part of the original NSF grant, we considered AI the natural evolution of computational thinking in the formation of engineers and plan to continue our work in this direction. 
    more » « less
  4. Less than 30% of students enrolled in the U.S. are proficient in science or mathematics. The landscape becomes more troubling among students who traditionally are underrepresented in STEM. For instance, in 2015, fourth grade Black students scored on average 24 points lower than their White counterparts, and 35 points lower than their Asian American counterparts. When data are disaggregated further by sex, underrepresented males, Black males in particular, underperform Black girls on fourth grade mathematics assessment. Additionally, underrepresented males who graduate from high school complete fewer math and science courses compared to their White and Asian peers, and are less likely to take ‘gatekeeper’ courses such as Pre-Calculus and Calculus. As a way to help counteract the underrepresentation of underrepresented males in STEM, St. Elmo Brady STEM Academy (SEBA), an afterschool and Saturday program was developed to expose underrepresented fourth and fifth grade boys to unique, hands-on STEM experiences. What distinguishes SEBA from other afterschool STEM programs is the inclusion of the students’ fathers and underrepresented undergraduate student mentors. SEBA seeks to systematically expose students to STEM disciplines, STEM professionals, and STEM students with a strong focus on engineering and science competency and motivation. Informed by an Integrated STEM Framework, the project team seeks to investigate 1) In what ways do the fathers/mentors motivate students to become aware of and interested in STEM careers? 2) To what extent does involvement in SEBA shape the students’ and mentors’ STEM identity? Preliminary data suggest a correlation between the number of mentor contact hours and student STEM identity and a positive value added as a result of father interaction. The success of this program hinges on its ability to bridge the gap between universities and the community. There are plans in place to grow the program by expanding to additional schools. 
    more » « less
  5. null (Ed.)
    Though adolescents’ science identity beliefs predict positive STEM outcomes, researchers have yet to examine developmental differences within racial/ethnic groups despite theoretical arguments for such studies. The current study examined science identity trajectories for Black (14%), Latinx (22%), Asian (4%), and White (52%) students (N = 21,170; 50% girls) from 9th grade to three years post-high school and the variability within each racial/ethnic group based on gender and college generational status. Contrary to the literature, students’ science identities increased over time, and the increases were larger for potential first- versus continuing-generation White students. Potential continuing-generation boys had stronger 9th grade science identities than potential first-generation girls in all groups except Asians. The findings suggest who might benefit from additional supports within each racial/ethnic group. 
    more » « less