skip to main content


Title: Oxidizable Ketones: Persistent Radical Cations from the Single‐Electron Oxidation of 2,3‐Diaminocyclopropenones.
Abstract

Single electron oxidation of 2,3‐diaminocyclopropenones is shown to give rise to stable diaminocyclopropenium oxyl (DACO) radical cations. Cyclic voltammetry reveals reversible oxidations in the range of +0.70–1.10 V (vs. SCE). Computational, EPR, and X‐ray analysis support the view that the oxidized species is best described as a cyclopropenium ion with spin density located on the heteroatom substituents, including 23.5 % on oxygen. The metal–ligand behavior of the DACO radical is also described.

 
more » « less
NSF-PAR ID:
10102901
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
131
Issue:
24
ISSN:
0044-8249
Page Range / eLocation ID:
p. 8133-8136
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Single electron oxidation of 2,3‐diaminocyclopropenones is shown to give rise to stable diaminocyclopropenium oxyl (DACO) radical cations. Cyclic voltammetry reveals reversible oxidations in the range of +0.70–1.10 V (vs. SCE). Computational, EPR, and X‐ray analysis support the view that the oxidized species is best described as a cyclopropenium ion with spin density located on the heteroatom substituents, including 23.5 % on oxygen. The metal–ligand behavior of the DACO radical is also described.

     
    more » « less
  2. Abstract

    A new strategy to stabilize free radicals electronically is described by conjugating formally antiaromatic substituents to the free radical. With an antiaromatic substituent, the radical acts as an electron sink to allow configuration mixing of a low‐energy zwitterionic state that provides antiaromaticity relief to the substituent. A combination of X‐ray crystallography, VT‐EPR and VT‐UV/Vis spectroscopy, as well as computational analysis, was used to investigate this phenomenon. We find that this strategy of antiaromaticity relief is successful at stabilizing radicals, but only if the antiaromatic substituent is constrained to be planar by synthetically imposed conformational restraints that enable state mixing. This work leads to the counterintuitive finding that increasing the antiaromaticity of the radical substituent leads to greater radical stability, providing proof of concept for a new stereoelectronic approach for stabilizing free radicals.

     
    more » « less
  3. Abstract

    A new strategy to stabilize free radicals electronically is described by conjugating formally antiaromatic substituents to the free radical. With an antiaromatic substituent, the radical acts as an electron sink to allow configuration mixing of a low‐energy zwitterionic state that provides antiaromaticity relief to the substituent. A combination of X‐ray crystallography, VT‐EPR and VT‐UV/Vis spectroscopy, as well as computational analysis, was used to investigate this phenomenon. We find that this strategy of antiaromaticity relief is successful at stabilizing radicals, but only if the antiaromatic substituent is constrained to be planar by synthetically imposed conformational restraints that enable state mixing. This work leads to the counterintuitive finding that increasing the antiaromaticity of the radical substituent leads to greater radical stability, providing proof of concept for a new stereoelectronic approach for stabilizing free radicals.

     
    more » « less
  4. Abstract

    The one‐step syntheses, X‐ray structures, and spectroscopic characterization of synthetic iron clusters, bearing either inorganic sulfides or thiolate with interstitial carbide motifs, are reported. Treatment of iron carbide carbonyl clusters [Fenn‐C)(CO)m]x(n=5,6;m=15,16;x=0,−2) with electrophilic sulfur sources (S2Cl2, S8) results in the formation of several μ4‐S dimers of clusters, and moreover, iron‐sulfide‐(sulfocarbide) clusters. The core sulfocarbide unit {C−S}4−serves as a structural model for a proposed intermediate in the radicalS‐adenosyl‐L‐methionine biogenesis of the M‐cluster. Furthermore, the electrophilic sulfur strategy has been extended to provide the first ever thiolato‐iron‐carbide complex: an analogous reaction with toluylsulfenyl chloride affords the cluster [Fe55‐C)(SC7H7)(CO)13]. The strategy described herein provides a breakthrough towards developing syntheses of biomimetic iron‐sulfur‐carbide clusters like FeMoco.

     
    more » « less
  5. Abstract

    Approaching 25 years since its invention, atom transfer radical polymerization (ATRP) is established as a powerful technique to prepare precisely defined polymeric materials. This perspective focuses on the relation between structure and activity of ATRP catalysts, and the consequent choice of the initiating system, which are paramount aspects to well‐controlled polymerizations. The ATRP mechanism is discussed, including the effect of kinetic and thermodynamic parameters and side reactions affecting the catalyst. The coordination chemistry and activity of copper complexes used in ATRP are reviewed in chronological order, while emphasizing the structure–activity correlation. ATRP‐initiating systems are described, from normal ATRP to low ppm Cu systems. Most recent advancements regarding dispersed media and oxygen‐tolerant techniques are presented, as well as future opportunities that arise from progressively more active catalysts and deeper mechanistic understanding.

     
    more » « less