skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Devil is in the Details: Identifying Aspects of Temperature Variation that Underlie Sex Determination in Species with TSD
Abstract Most organisms experience thermal variability in their environment; however, our understanding of how organisms cope with this variation is under-developed. For example, in organisms with temperature-dependent sex determination (TSD), an inability to predict sex ratios under fluctuating incubation temperatures in the field hinders predictions of how species with TSD will fare in a changing climate. To better understand how sex determination is affected by thermal variation, we incubated Trachemys scripta eggs using a “heat wave” design, where embryos experienced a male-producing temperature of 25 ± 3°C for the majority of development and varying durations at a female-producing temperature of 29.5 ± 3°C during the window of development when sex is determined. We compared the sex ratios from these incubation conditions with a previous data set that utilized a similar heat wave design, but instead incubated eggs at a male-producing temperature of 27 ± 3°C but utilized the same female-producing temperature of 29.5 ± 3°C. We compared the sex ratio reaction norms produced from these two incubation conditions and found that, despite differences in average temperatures, both conditions produced 50:50 sex ratios after ∼8 days of exposure to female-producing conditions. This emphasizes that sex can be determined in just a few days at female-producing conditions and that sex determination is relatively unaffected by temperatures outside of this short window. Further, these data demonstrate the reduced accuracy of the constant temperature equivalent model (the leading method of predicting sex ratios) under thermally variable temperatures. Conceptualizing sex determination as the number of days spent incubating at female-producing conditions rather than an aggregate statistic is supported by the mechanistic underpinnings of TSD, helps to improve sex ratio estimation methods, and has important consequences for predicting how species with TSD will fare in a changing climate.  more » « less
Award ID(s):
1833590
PAR ID:
10103089
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
59
Issue:
4
ISSN:
1540-7063
Page Range / eLocation ID:
p. 1081-1088
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Temperature-dependent sex determination (TSD) decides the sex fate of an individual based on incubation temperature. However, other environmental factors, such as pollutants, could derail TSD sexual development. Cadmium is one such contaminant of soils and water bodies known to affect DNA methylation, an epigenetic DNA modification with a key role in sexual development of TSD vertebrate embryos. Yet, whether cadmium alters DNA methylation of genes underlying gonadal formation in turtles remains unknown. Here, we investigated the effects of cadmium on the expression of two gene regulators of TSD in the painted turtle, Chrysemys picta, incubated at male-producing and female-producing temperatures using qPCR. Results revealed that cadmium alters transcription of Dmrt1 and aromatase, overriding the normal thermal effects during embryogenesis, which could potentially disrupt the sexual development of TSD turtles. Results from a preliminary DNA methylation-sensitive PCR assay implicate changes in DNA methylation of Dmrt1 as a potential cause that requires further testing (aromatase methylation assays were precluded). 
    more » « less
  2. null (Ed.)
    The environment experienced during embryonic development is a rich source of phenotypic variation, as environmental signals have the potential to both inform adaptive plastic responses and disrupt normal developmental programs. Environment-by-embryo interactions are particularly consequential for species with temperature-dependent sex determination, a mode of sex determination common in non-avian reptiles and fish, in which thermal cues during a discrete period of development drive the formation of either an ovary or a testis. Here we examine the impact of thermal variation during incubation in combination with developmental exposure to a common endocrine-disrupting contaminant on fitness-related hatchling traits in the American alligator (Alligator mississippiensis), a species with temperature-dependent sex determination. Using a factorial design, we exposed field-collected eggs to five thermal profiles (three constant temperatures, two fluctuating temperatures) and two environmentally relevant doses of the pesticide metabolite dichlorodiphenyldichloroethylene; and we quantified incubation duration, sex ratios, hatchling morphometric traits, and growth (9–10 days post-hatch). Whereas dichlorodiphenyldichloroethylene exposure did not generally affect hatchling traits, constant and fluctuating temperatures produced diverse phenotypic effects. Thermal fluctuations led to subtle changes in incubation duration and produced shorter hatchlings with smaller heads when compared to the constant temperature control. Warmer, male-promoting incubation temperatures resulted in larger hatchlings with more residual yolk reserves when compared to cooler, female-promoting temperatures. Together, these findings advance our understanding of how complex environmental factors interact with developing organisms to generate phenotypic variation and raise questions regarding the mechanisms connecting variable thermal conditions to responses in hatchling traits and their evolutionary implications for temperature-dependent sex determination. 
    more » « less
  3. Abstract Many ectotherms rely on temperature cues experienced during development to determine offspring sex. The first descriptions of temperature‐dependent sex determination (TSD) were made over 50 years ago, yet an understanding of its adaptive significance remains elusive, especially in long‐lived taxa.One novel hypothesis predicts that TSD should be evolutionarily favoured when two criteria are met—(a) incubation temperature influences annual juvenile survival and (b) sexes mature at different ages. Under these conditions, a sex‐dependent effect of incubation temperature on offspring fitness arises through differences in age at sexual maturity, with the sex that matures later benefiting disproportionately from temperatures that promote juvenile survival.The American alligator (Alligator mississippiensis) serves as an insightful model in which to test this hypothesis, as males begin reproducing nearly a decade after females. Here, through a combination of artificial incubation experiments and mark‐recapture approaches, we test the specific predictions of the survival‐to‐maturity hypothesis for the adaptive value of TSD by disentangling the effects of incubation temperature and sex on annual survival of alligator hatchlings across two geographically distinct sites.Hatchlings incubated at male‐promoting temperatures (MPTs) consistently exhibited higher survival compared to those incubated at female‐promoting temperatures. This pattern appears independent of hatchling sex, as females produced from hormone manipulation at MPT exhibit similar survival to their male counterparts.Additional experiments show that incubation temperature may affect early‐life survival primarily by affecting the efficiency with which maternally transferred energy resources are used during development.Results from this study provide the first explicit empirical support for the adaptive value of TSD in a crocodilian and point to developmental energetics as a potential unifying mechanism underlying persistent survival consequences of incubation temperature. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  4. ABSTRACT Considerations of the impact climate change has on reptiles are typically focused on habitat change or loss, range shifts and skewed sex ratios in species with temperature-dependent sex determination. Here, we show that incubation temperature alters stripe number and head colouration of hatchling American alligators (Alligator mississippiensis). Animals incubated at higher temperatures (33.5°C) had, on average, one more stripe than those at lower temperatures (29.5°C), and also had significantly lighter heads. These patterns were not affected by estradiol-induced sex reversal, suggesting independence from hatchling sex. Therefore, increases in nest temperatures as a result of climate change have the potential to alter pigmentation patterning, which may have implications for offspring fitness. 
    more » « less
  5. Temperature-dependent sex determination (TSD) is a well-known characteristic of many reptilian species. However, the molecular processes linking ambient temperature to determination of gonad fate remain hazy. Here, we test the hypothesis that Wnt expression and signaling differ between female- and male-producing temperatures in the snapping turtle Chelydra serpentina. Canonical Wnt signaling involves secretion of glycoproteins called WNTs, which bind to and activate membrane bound receptors that trigger β-catenin stabilization and translocation to the nucleus where β-catenin interacts with TCF/LEF transcription factors to regulate expression of Wnt targets. Non-canonical Wnt signaling occurs via 2 pathways that are independent of β-catenin: one involves intracellular calcium release (the Wnt/Ca2+ pathway), while the other involves activation of RAC1, JNK, and RHOA (the Wnt/planar cell polarity pathway). We screened 20 Wnt genes for differential expression between female- and male-producing temperatures during sex determination in the snapping turtle. Exposure of embryos to the female-producing temperature decreased expression of 7 Wnt genes but increased expression of 2 Wnt genes and Rspo1 relative to embryos at the male-producing temperature. Temperature also regulated expression of putative Wnt target genes in vivo and a canonical Wnt reporter (6x TCF/LEF sites drive H2B-GFP expression) in embryonic gonadal cells in vitro. Results indicate that Wnt signaling was higher at the female- than at the male-producing temperature. Evolutionary analyses of all 20 Wnt genes revealed that thermosensitive Wnts, as opposed to insensitive Wnts, were less likely to show evidence of positive selection and experienced stronger purifying selection within TSD species. 
    more » « less