skip to main content


Title: Sulfonate-Ligated Coordination Polymers Incorporating Paramagnetic Transition Metals: Sulfonate-Ligated Coordination Polymers Incorporating Paramagnetic Transition Metals
NSF-PAR ID:
10103094
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
European Journal of Inorganic Chemistry
Volume:
2019
Issue:
21
ISSN:
1434-1948
Page Range / eLocation ID:
p. 2613-2617
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Research involving polymer zwitterions typically involves the preparation of ammonium-based structures and their study as coatings or gels that impart hydrophilicity and/or antifouling properties to substrates and materials. More recent synthetic advances have produced a significant expansion in polymer zwitterion chemistry, especially with respect to the composition of the cationic moieties that open new possibilities to examine polymer zwitterions as amphiphiles, functional surfactants, and components of complex emulsions. This article describes the synthesis of new zwitterionic sulfonium sulfonate monomers and their use as starting materials in controlled free radical polymerization to yield the corresponding polymers. These novel polymer zwitterions bear sulfonium sulfonate groups, that possess an inverted dipole directionality relative to prior examples that yields different and unexpected physical and chemical properties. For example, the polymer zwitterions described here are soluble in a wide range of nonaqueous solvents and possess significantly greater stability against nucleophiles relative to their dipole-inverted counterparts. Additionally, the amphiphilic character of these sulfonium sulfonate polymers makes them amenable to use as surfactants for stabilizing oil-in-water emulsions, a feature that is not possible using conventional ultrahydrophilic polymer zwitterions. 
    more » « less
  2. Abstract

    Polymer zwitterions continue to emerge as useful materials for numerous applications, ranging from hydrophilic and antifouling coatings to electronic materials interfaces. While several polymer zwitterion compositions are now well established, interest in this field of soft materials science has grown rapidly in recent years due to the introduction of new structures that diversify their chemistry and architecture. Nonetheless, at present, the variation of the chemical composition of the anionic and cationic components of zwitterionic structures remains relatively limited to a few primary examples. In this article, the versatility of 4‐vinylbenzyl sultone as a precursor to ammonium sulfonate zwitterionic monomers, which are then used in controlled free radical polymerization chemistry to afford “inverted sulfobetaine” polymer zwitterions, is highlighted. An evaluation of the solubility, interfacial activity, and solution configuration of the resultant polymers reveals the dependence of properties on the selection of tertiary amines used for nucleophilic ring‐opening of the sultone precursor, as well as useful properties comparisons across different zwitterionic compositions.

     
    more » « less