skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development and Evaluation of Traffic Count Sensor with Low-Cost Light-Detection and Ranging and Continuous Wavelet Transform: Initial Results
This paper presents a cost-effective, non-intrusive, and easy-to-deploy traffic count data collection method using two-dimensional light-detection and ranging (LiDAR) technology. The proposed method integrates a LiDAR sensor, continuous wavelet transform (CWT), and support vector machine (SVM) into a single framework for traffic count. LiDAR is adopted since the technology is economical and easily accessible. Moreover, its 360° visibility and accurate distance information make it more reliable compared with radar, which uses electromagnetic waves instead of light rays. The obtained distance data are converted into the signals. CWT is employed to detect any deviation in distance profile, because of its efficiency in detecting modest changes over a period of time. SVM is one of the supervised machine learning tools for data classification and regression. In the methodology, the SVM is applied to classify the distance data points obtained from the sensor into detection and non-detection cases, which are highly complex. Proof-of-concept (POC) test is conducted in three different places in Newark, New Jersey, to examine the performance of the proposed method. The POC test results demonstrate that the proposed method achieves acceptable performances in vehicle count collection, resulting in 83–94% accuracy. It is discovered that the accuracy of the proposed method is affected by the color of the exterior surface of a vehicle.  more » « less
Award ID(s):
1844238
PAR ID:
10103263
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Transportation Research Record: Journal of the Transportation Research Board
Volume:
2673
Issue:
11
ISSN:
0361-1981
Format(s):
Medium: X Size: p. 209-219
Size(s):
p. 209-219
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    High-resolution vehicle trajectory data can be used to generate a wide range of performance measures and facilitate many smart mobility applications for traffic operations and management. In this paper, a Longitudinal Scanline LiDAR-Camera model is explored for trajectory extraction at urban arterial intersections. The proposed model can efficiently detect vehicle trajectories under the complex, noisy conditions (e.g., hanging cables, lane markings, crossing traffic) typical of an arterial intersection environment. Traces within video footage are then converted into trajectories in world coordinates by matching a video image with a 3D LiDAR (Light Detection and Ranging) model through key infrastructure points. Using 3D LiDAR data will significantly improve the camera calibration process for real-world trajectory extraction. The pan-tilt-zoom effects of the traffic camera can be handled automatically by a proposed motion estimation algorithm. The results demonstrate the potential of integrating longitudinal-scanline-based vehicle trajectory detection and the 3D LiDAR point cloud to provide lane-by-lane high-resolution trajectory data. The resulting system has the potential to become a low-cost but reliable measure for future smart mobility systems. 
    more » « less
  2. Ensuring the safety of vulnerable road users (VRUs) such as pedestrians, users of micro-mobility vehicles, and cyclists is imperative for the commercialization of automated vehicles (AVs) in urban traffic scenarios. City traffic intersections are of particular concern due to the precarious situations VRUs often encounter when navigating these locations, primarily because of the unpredictable nature of urban traffic. Earlier work from the Institute of Automated Vehicles (IAM) has developed and evaluated Driving Assessment (DA) metrics for analyzing car following scenarios. In this work, we extend those evaluations to an urban traffic intersection testbed located in downtown Tempe, Arizona. A multimodal infrastructure sensor setup, comprising a high-density, 128-channel LiDAR and a 720p RGB camera, was employed to collect data during the dusk period, with the objective of capturing data during the transition from daylight to night. In this study, we present and empirically assess the benefits of high-density LiDAR in low-light and dark conditions—a persistent challenge in VRU detection when compared to traditional RGB traffic cameras. Robust detection and tracking algorithms were utilized for analyzing VRU-to-vehicle and vehicle-to-vehicle interactions using the LiDAR data. The analysis explores the effectiveness of two DA metrics based on the i.e. Post Encroachment Time (PET) and Minimum Distance Safety Envelope (MDSE) formulations in identifying potentially unsafe scenarios for VRUs at the Tempe intersection. The codebase for the data pipeline, along with the high-density LiDAR dataset, has been open-sourced with the goal of benefiting the AV research community in the development of new methods for ensuring safety at urban traffic intersections. 
    more » « less
  3. Traffic energy consumption estimation is significant for the sustainable transportation. However, it is difficult to directly employ macro traffic flow data to accurately estimate the traffic energy consumption due to many traffic energy consumption models need second-by-second vehicle trajectory. To solve this problem, this paper proposes a traffic energy consumption model based on the macro-micro data, which the macro data derived from the fixed-location sensors and sparse micro data derived from the Connected and Automated Vehicles (CAVs). The completed vehicle trajectories are constructed by the nonparametric kernel smoothing algorithm and variational theory. To test the performance of the proposed method, the Next Generation Simulation micro (NGSIM) dataset and Caltrans Performance Measurement System macro dataset obtained from the same road and time are used. The results indicate that the proposed method not only can reflect the characteristics of traffic kinematic waves caused by traffic congestion, but also minimize the errors generated by the macro-micro transformation. In addition, it can significantly improve the accuracy of energy consumption estimation. 
    more » « less
  4. This paper develops a cost-effective vehicle detection and tracking system based on fusion of a 2-D LIDAR and a monocular camera to protect electric micromobility devices, especially e-scooters, by predicting the real- time danger of a car- scooter collision. The cost and size disadvantages of 3-D LIDAR sensors make them an unsuitable choice for micromobility devices. Therefore, a 2-D RPLIDAR Mapper sensor is used. Although low-cost, this sensor comes with major shortcomings such as the narrow vertical field of view and its low density of data points. Due to these factors, the sensor does not have a robust output in outdoor applications, and the measurements keep jumping and sliding on the vehicle surface. To improve the performance of the LIDAR, a single monocular camera is fused with the LIDAR data not only to detect vehicles, but also to separately detect the front and side of a target vehicle and to find its corner. It is shown that this corner detection method is more accurate than strategies that are only based on the LIDAR data. The corner measurements are used in a high-gain observer to estimate the location, velocity, and orientation of the target vehicle. The developed system is implemented on a Ninebot e-scooter platform, and multiple experiments are performed to evaluate the performance of the algorithm. 
    more » « less
  5. Modern industrial processes are continuously monitored by a large number of sensors. Despite having access to large volumes of historical and online sensor data, industrial practitioners still face challenges in the era of Industry 4.0 in effectively utilizing them to perform online process monitoring and fast fault detection and diagnosis. To target these challenges, in this work, we present a novel framework named "FARM" for Fast, Accurate, and Robust online process Monitoring. FARM is a holistic monitoring framework that integrates (a) advanced multivariate statistical process control (SPC) for fast anomaly detection of nonparametric, heterogeneous data streams, and (b) modified support vector machine (SVM) for accurate and robust fault classification. Unlike existing general-purpose process monitoring frameworks, FARM's unique hierarchical architecture decomposes process monitoring into two fault detection and diagnosis, each of which is conducted by targeted algorithms. Here, we test and validate the performance of our FARM monitoring framework on Tennessee Eastman Process (TEP) benchmark dataset. We show that SPC achieves faster fault detection speed at a lower false alarm rate compared to state-of-the-art benchmark fault detection methods. In terms of fault classification diagnosis, we show that our modified SVM algorithm successfully classifies 17 out of 20 of the fault scenarios present in the TEP dataset. Compared with the results of standard SVM trained directly on the original dataset, our modified SVM improves the fault classification accuracy significantly. 
    more » « less