skip to main content


Title: Estimation of Snowfall Properties at a Mountainous Site in Norway Using Combined Radar and In Situ Microphysical Observations

The ability of in situ snowflake microphysical observations to constrain estimates of surface snowfall accumulations derived from coincident, ground-based radar observations is explored. As part of the High-Latitude Measurement of Snowfall (HiLaMS) field campaign, a Micro Rain Radar (MRR), Precipitation Imaging Package (PIP), and Multi-Angle Snow Camera (MASC) were deployed to the Haukeliseter Test Site run by the Norwegian Meteorological Institute during winter 2016/17. This measurement site lies near an elevation of 1000 m in the mountains of southern Norway and houses a double-fence automated reference (DFAR) snow gauge and a comprehensive set of meteorological observations. MASC and PIP observations provided estimates of particle size distribution (PSD), fall speed, and habit. These properties were used as input for a snowfall retrieval algorithm using coincident MRR reflectivity measurements. Retrieved surface snowfall accumulations were evaluated against DFAR observations to quantify retrieval performance as a function of meteorological conditions for the Haukeliseter site. These analyses found differences of less than 10% between DFAR- and MRR-retrieved estimates over the field season when using either PIP or MASC observations for low wind “upslope” events. Larger biases of at least 50% were found for high wind “pulsed” events likely because of sampling limitations in the in situ observations used to constrain the retrieval. However, assumptions of MRR Doppler velocity for mean particle fall speed and a temperature-based PSD parameterization reduced this difference to +16% for the pulsed events. Although promising, these results ultimately depend upon selection of a snowflake particle model that is well matched to scene environmental conditions.

 
more » « less
NSF-PAR ID:
10103317
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Applied Meteorology and Climatology
Volume:
58
Issue:
6
ISSN:
1558-8424
Page Range / eLocation ID:
p. 1337-1352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Ground-based measurements of frozen precipitation are heavily influenced by interactions of surface winds with gauge-shield geometry. The Multi-Angle Snowflake Camera (MASC), which photographs hydrometeors in free-fall from three different angles while simultaneously measuring their fall speed, has been used in the field at multiple midlatitude and polar locations both with and without wind shielding. Here, we present an analysis of Arctic field observations – with and without a Belfort double Alter shield – and compare the results to computational fluid dynamics (CFD) simulations of the airflow and corresponding particle trajectories around the unshielded MASC. MASC-measured fall speeds compare well with Ka-band Atmospheric Radiation Measurement (ARM) Zenith Radar (KAZR) mean Doppler velocities only when winds are light (≤5ms-1) and the MASC is shielded. MASC-measured fall speeds that do not match KAZR-measured velocities tend to fall below a threshold value that increases approximately linearly with wind speed but is generally <0.5ms-1. For those events with wind speeds ≤1.5ms-1, hydrometeors fall with an orientation angle mode of 12∘ from the horizontal plane, and large, low-density aggregates are as much as 5 times more likely to be observed. Simulations in the absence of a wind shield show a separation of flow at the upstream side of the instrument, with an upward velocity component just above the aperture, which decreases the mean particle fall speed by 55 % (74 %) for a wind speed of 5 m s−1 (10 m s−1). We conclude that accurate MASC observations of the microphysical, orientation, and fall speed characteristics of snow particles require shielding by a double wind fence and restriction of analysis to events where winds are light (≤5ms-1). Hydrometeors do not generally fall in still air, so adjustments to these properties' distributions within natural turbulence remain to be determined. 
    more » « less
  2. Abstract This study evaluates ice particle size distribution and aspect ratio φ Multi-Radar Multi-Sensor (MRMS) dual-polarization radar retrievals through a direct comparison with two legs of observational aircraft data obtained during a winter storm case from the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign. In situ cloud probes, satellite, and MRMS observations illustrate that the often-observed K dp and Z DR enhancement regions in the dendritic growth layer can either indicate a local number concentration increase of dry ice particles or the presence of ice particles mixed with a significant number of supercooled liquid droplets. Relative to in situ measurements, MRMS retrievals on average underestimated mean volume diameters by 50% and overestimated number concentrations by over 100%. IWC retrievals using Z DR and K dp within the dendritic growth layer were minimally biased relative to in situ calculations where retrievals yielded −2% median relative error for the entire aircraft leg. Incorporating φ retrievals decreased both the magnitude and spread of polarimetric retrievals below the dendritic growth layer. While φ radar retrievals suggest that observed dendritic growth layer particles were nonspherical (0.1 ≤ φ ≤ 0.2), in situ projected aspect ratios, idealized numerical simulations, and habit classifications from cloud probe images suggest that the population mean φ was generally much higher. Coordinated aircraft radar reflectivity with in situ observations suggests that the MRMS systematically underestimated reflectivity and could not resolve local peaks in mean volume diameter sizes. These results highlight the need to consider particle assumptions and radar limitations when performing retrievals. significance statement Developing snow is often detectable using weather radars. Meteorologists combine these radar measurements with mathematical equations to study how snow forms in order to determine how much snow will fall. This study evaluates current methods for estimating the total number and mass, sizes, and shapes of snowflakes from radar using images of individual snowflakes taken during two aircraft legs. Radar estimates of snowflake properties were most consistent with aircraft data inside regions with prominent radar signatures. However, radar estimates of snowflake shapes were not consistent with observed shapes estimated from the snowflake images. Although additional research is needed, these results bolster understanding of snow-growth physics and uncertainties between radar measurements and snow production that can improve future snowfall forecasting. 
    more » « less
  3. null (Ed.)
    Abstract An engaged scholarship project called “Snowflake Selfies” was developed and implemented in an upper-level undergraduate course at The Pennsylvania State University (Penn State). During the project, students conducted research on snow using low-cost, low-tech instrumentation that may be readily implemented broadly and scaled as needed, particularly at institutions with limited resources. During intensive observing periods (IOPs), students measured snowfall accumulations, snow-to-liquid ratios, and took microscopic photographs of snow using their smartphones. These observations were placed in meteorological context using radar observations and thermodynamic soundings, helping to reinforce concepts from atmospheric thermodynamics, cloud physics, radar, and mesoscale meteorology courses. Students also prepared a term paper and presentation using their datasets/photographs to hone communication skills. Examples from IOPs are presented. The Snowflake Selfies project was well received by undergraduate students as part of the writing-intensive course at Penn State. Responses to survey questions highlight the project’s effectiveness at engaging students and increasing their enthusiasm for the semester-long project. The natural link to social media broadened engagement to the community level. Given the successes at Penn State, we encourage Snowflake Selfies or similar projects to be adapted or implemented at other institutions. 
    more » « less
  4. null (Ed.)
    Abstract This study focuses on the ability of the Global Precipitation Measurement (GPM) passive microwave sensors to detect and provide quantitative precipitation estimates (QPE) for extreme lake-effect snowfall events over the U.S. lower Great Lakes region. GPM Microwave Imager (GMI) high-frequency channels can clearly detect intense shallow convective snowfall events. However, GMI Goddard Profiling (GPROF) QPE retrievals produce inconsistent results when compared with the Multi-Radar Multi-Sensor (MRMS) ground-based radar reference dataset. While GPROF retrievals adequately capture intense snowfall rates and spatial patterns of one event, GPROF systematically underestimates intense snowfall rates in another event. Furthermore, GPROF produces abundant light snowfall rates that do not accord with MRMS observations. Ad hoc precipitation-rate thresholds are suggested to partially mitigate GPROF’s overproduction of light snowfall rates. The sensitivity and retrieval efficiency of GPROF to key parameters (2-m temperature, total precipitable water, and background surface type) used to constrain the GPROF a priori retrieval database are investigated. Results demonstrate that typical lake-effect snow environmental and surface conditions, especially coastal surfaces, are underpopulated in the database and adversely affect GPROF retrievals. For the two presented case studies, using a snow-cover a priori database in the locations originally deemed as coastline improves retrieval. This study suggests that it is particularly important to have more accurate GPROF surface classifications and better representativeness of the a priori databases to improve intense lake-effect snow detection and retrieval performance. 
    more » « less
  5. null (Ed.)
    Abstract The Precipitation Occurrence Sensor System (POSS) is a small X-band Doppler radar that measures the Doppler velocity spectra from precipitation falling in a small volume near the sensor. The sensor records a 2D frequency of occurrence matrix of the velocity and power at the mode of each spectrum measured over 1 min. The centroid of the distribution of these modes, along with other spectral parameters, defines a data vector input to a multiple discriminant analysis (MDA) for classification of the precipitation type. This requires the a priori determination of a training set for different types, particle size distributions (PSDs), and wind speed conditions. A software model combines POSS system parameters, a particle scattering cross section, and terminal velocity models, to simulate the real-time Doppler signal measured by the system for different PSDs and wind speeds. This is processed in the same manner as the system hardware to produce bootstrap samples of the modal centroid distributions for the MDA training set. MDA results are compared to images from the Multi-Angle Snowflake Camera (MASC) at the MASCRAD site near Easton, Colorado, and to the CSU–CHILL X-band radar observations from Greeley, Colorado. In the four case studies presented, POSS successfully identified precipitation transitions through a range of types (rain, graupel, rimed dendrites, aggregates, unrimed dendrites). Also two separate events of hail were reported and confirmed by the images. 
    more » « less