skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A counterexample to the DeMarco‐Kahn upper tail conjecture
Given a fixed graph H, what is the (exponentially small) probability that the number XHof copies of Hin the binomial random graph Gn,pis at least twice its mean? Studied intensively since the mid 1990s, this so‐called infamous upper tail problem remains a challenging testbed for concentration inequalities. In 2011 DeMarco and Kahn formulated an intriguing conjecture about the exponential rate of decay of for fixed ε > 0. We show that this upper tail conjecture is false, by exhibiting an infinite family of graphs violating the conjectured bound.  more » « less
Award ID(s):
1703516
PAR ID:
10103398
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Random Structures & Algorithms
Volume:
55
Issue:
4
ISSN:
1042-9832
Page Range / eLocation ID:
p. 775-794
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The classical Hadwiger conjecture dating back to 1940s states that any graph of chromatic number at leastrhas the clique of orderras a minor. Hadwiger's conjecture is an example of a well‐studied class of problems asking how large a clique minor one can guarantee in a graph with certain restrictions. One problem of this type asks what is the largest size of a clique minor in a graph onnvertices of independence numberat mostr. If true Hadwiger's conjecture would imply the existence of a clique minor of order. Results of Kühn and Osthus and Krivelevich and Sudakov imply that if one assumes in addition thatGisH‐free for some bipartite graphHthen one can find a polynomially larger clique minor. This has recently been extended to triangle‐free graphs by Dvořák and Yepremyan, answering a question of Norin. We complete the picture and show that the same is true for arbitrary graphH, answering a question of Dvořák and Yepremyan. In particular, we show that any‐free graph has a clique minor of order, for some constantdepending only ons. The exponent in this result is tight up to a constant factor in front of theterm. 
    more » « less
  2. An edge‐ordered graph is a graph with a linear ordering of its edges. Two edge‐ordered graphs areequivalentif there is an isomorphism between them preserving the edge‐ordering. Theedge‐ordered Ramsey number redge(H; q) of an edge‐ordered graphHis the smallestNsuch that there exists an edge‐ordered graphGonNvertices such that, for everyq‐coloring of the edges ofG, there is a monochromatic subgraph ofGequivalent toH. Recently, Balko and Vizer proved thatredge(H; q) exists, but their proof gave enormous upper bounds on these numbers. We give a new proof with a much better bound, showing there exists a constantcsuch thatfor every edge‐ordered graphHonnvertices. We also prove a polynomial bound for the edge‐ordered Ramsey number of graphs of bounded degeneracy. Finally, we prove a strengthening for graphs where every edge has a label and the labels do not necessarily have an ordering. 
    more » « less
  3. A 1992 conjecture of Alon and Spencer says, roughly, that the ordinary random graphGn,1/2typically admits a covering of a constant fraction of its edges by edge‐disjoint, nearly maximum cliques. We show that this is not the case. The disproof is based on some (partial) understanding of a more basic question: forandA1,…,Atchosen uniformly and independently from thek‐subsets of {1,…,n}, what can one say aboutOur main concern is trying to understand how closely the answers to this and a related question about matchings follow heuristics gotten by pretending that certain (dependent) choices are made independently. 
    more » « less
  4. The upper tail problem in a random graph asks to estimate the probability that the number of copies of some fixed subgraph in an Erdős‐Rényi random graph exceeds its expectation by some constant factor. There has been much exciting recent progress on this problem. We study the corresponding problem for hypergraphs, for which less is known about the large deviation rate. We present new phenomena in upper tail large deviations for sparse random hypergraphs that are not seen in random graphs. We conjecture a formula for the large deviation rate, that is, the first order asymptotics of the log‐probability that the number of copies of fixed subgraphHin a sparse Erdős‐Rényi randomk‐uniform hypergraph exceeds its expectation by a constant factor. This conjecture turns out to be significantly more intricate compared to the case for graphs. We verify our conjecture when the fixed subgraphHbeing counted is a clique, as well as whenHis the 3‐uniform 6‐vertex 4‐edge hypergraph consisting of alternating faces of an octahedron, where new techniques are required. 
    more » « less
  5. We prove the endpoint case of a conjecture of Khot and Moshkovitz related to the unique games conjecture, less a small error. Letn ≥ 2. Suppose a subset Ω ofn‐dimensional Euclidean spacesatisfies −Ω = Ωcand Ω + v = Ωc(up to measure zero sets) for every standard basis vector. For anyand for anyq ≥ 1, letand let. For anyx ∈ ∂Ω, letN(x) denote the exterior normal vector atxsuch that ‖N(x)‖2 = 1. Let. Our main result shows thatBhas the smallest Gaussian surface area among all such subsets Ω, less a small error:In particular,Standard arguments extend these results to a corresponding weak inequality for noise stability. Removing the factor 6 × 10−9would prove the endpoint case of the Khot‐Moshkovitz conjecture. Lastly, we prove a Euclidean analogue of the Khot and Moshkovitz conjecture. The full conjecture of Khot and Moshkovitz provides strong evidence for the truth of the unique games conjecture, a central conjecture in theoretical computer science that is closely related to the P versus NP problem. So, our results also provide evidence for the truth of the unique games conjecture. Nevertheless, this paper does not prove any case of the unique games conjecture. 
    more » « less