skip to main content


Title: Magnetism-induced massive Dirac spectra and topological defects in the surface state of Cr-doped Bi 2 Se 3 -bilayer topological insulators
NSF-PAR ID:
10103596
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
17
Issue:
11
ISSN:
1367-2630
Page Range / eLocation ID:
Article No. 113042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Abstract

    Raman scattering is a powerful probe oflocal structure (LS)of glasses. In Sodium Phosphate Glasses (SPGs), we show that bothLScomposed of Qnspecies andExtended Range Structures (ERS)composed of Long Chains (LCs), Large Rings (LRs), and Small Rings (SRs) can be decoded by Raman scattering. The trimodal distribution of P‐Oterminalstretch modes of Q2species and P‐Obridgingatx < 50% are manifestations of theseERS. These two pairs of triads of modes are uniquely identified with Q2units present in either LCs, or LRs, or SRs. The existence three phases of c‐NaPO3composed of 3‐membered rings, 6‐membered rings, and infinitely long chains has facilitated the identification. The Intermediate Phase (IP) in SPGs extends in the 37.5 < x < 46.0% range, the Stressed‐rigid Phase in the 46.0% < x < 50%, and the Flexible Phase in the 18% < x < 37.5% range of soda. We show the IP consists predominantly of LCs (82%), with a minority of LRs (15%) and SRs (3%). The LR‐ and SR‐fractions increase measurably in the non‐IP phases. The structural finding is in harmony with the high configurational entropy of the IP glasses that leads aging to be qualitatively suppressed.

     
    more » « less
  3. Abstract MnBi 2 Te 4 /(Bi 2 Te 3 ) n materials system has recently generated strong interest as a natural platform for the realization of the quantum anomalous Hall (QAH) state. The system is magnetically much better ordered than substitutionally doped materials, however, the detrimental effects of certain disorders are becoming increasingly acknowledged. Here, from compiling structural, compositional, and magnetic metrics of disorder in ferromagnetic (FM) MnBi 2 Te 4 /(Bi 2 Te 3 ) n it is found that migration of Mn between MnBi 2 Te 4 septuple layers (SLs) and otherwise non-magnetic Bi 2 Te 3 quintuple layers (QLs) has systemic consequences—it induces FM coupling of Mn-depleted SLs with Mn-doped QLs, seen in ferromagnetic resonance as an acoustic and optical resonance mode of the two coupled spin subsystems. Even for a large SL separation ( n ≳ 4 QLs) the structure cannot be considered as a stack of uncoupled two-dimensional layers. Angle-resolved photoemission spectroscopy and density functional theory studies show that Mn disorder within an SL causes delocalization of electron wave functions and a change of the surface band structure as compared to the ideal MnBi 2 Te 4 /(Bi 2 Te 3 ) n . These findings highlight the critical importance of inter- and intra-SL disorder towards achieving new QAH platforms as well as exploring novel axion physics in intrinsic topological magnets. 
    more » « less