Abstract Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for obtaining precise information about the local bonding of materials, but difficult to interpret without a well-vetted dataset of reference spectra. The ability to predict NMR parameters and connect them to three-dimensional local environments is critical for understanding more complex, long-range interactions. New computational methods have revealed structural information available from29Si solid-state NMR by generating computed reference spectra for solids. Such predictions are useful for the identification of new silicon-containing compounds, and serve as a starting point for determination of the local environments present in amorphous structures. In this study, we have used 42 silicon sites as a benchmarking set to compare experimentally reported29Si solid-state NMR spectra with those computed by CASTEP-NMR and Vienna Ab Initio Simulation Program (VASP). Data-driven approaches enable us to identify the source of discrepancies across a range of experimental and computational results. The information from NMR (in the form of an NMR tensor) has been validated, and in some cases corrected, in an effort to catalog these for the local spectroscopy database infrastructure (LSDI), where over 10,00029Si NMR tensors for crystalline materials have been computed. Knowledge of specific tensor values can serve as the basis for executing NMR experiments with precision, optimizing conditions to capture the elements accurately. The ability to predict and compare experimental observables from a wide range of structures can aid researchers in their chemical assignments and structure determination, since the computed values enables the extension beyond tables of typical chemical shift (or shielding) ranges.
more »
« less
High Accuracy Protein Structures from Minimal Sparse Paramagnetic Solid‐State NMR Restraints
Abstract There is a pressing need for new computational tools to integrate data from diverse experimental approaches in structural biology. We present a strategy that combines sparse paramagnetic solid‐state NMR restraints with physics‐based atomistic simulations. Our approach explicitly accounts for uncertainty in the interpretation of experimental data through the use of a semi‐quantitative mapping between the data and the restraint energy that is calibrated by extensive simulations. We apply our approach to solid‐state NMR data for the model protein GB1 labeled with Cu2+‐EDTA at six different sites. We are able to determine the structure to 0.9 Å accuracy within a single day of computation on a GPU cluster. We further show that in some cases, the data from only a single paramagnetic tag are sufficient for accurate folding.
more »
« less
- Award ID(s):
- 1715174
- PAR ID:
- 10103924
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 58
- Issue:
- 20
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 6564-6568
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Solid‐state NMR measurements coupled with density functional theory (DFT) calculations demonstrate how hydrogen positions can be refined in a crystalline system. The precision afforded by rotational‐echo double‐resonance (REDOR) NMR to interrogate13C–1H distances is exploited along with DFT determinations of the13C tensor of carbonates (CO32−). Nearby1H nuclei perturb the axial symmetry of the carbonate sites in the hydrated carbonate mineral, hydromagnesite [4 MgCO3⋅Mg(OH)2⋅4 H2O]. A match between the calculated structure and solid‐state NMR was found by testing multiple semi‐local and dispersion‐corrected DFT functionals and applying them to optimize atom positions, starting from X‐ray diffraction (XRD)‐determined atomic coordinates. This was validated by comparing calculated to experimental13C{1H} REDOR and13C chemical shift anisotropy (CSA) tensor values. The results show that the combination of solid‐state NMR, XRD, and DFT can improve structure refinement for hydrated materials.more » « less
-
A new algorithm has been developed to simulate two-dimensional (2D) spectra with correlated anisotropic frequencies faster and more accurately than previous methods. The technique uses finite-element numerical integration on the sphere and an interpolation scheme based on the Alderman–Solum–Grant algorithm. This method is particularly useful for numerical calculations of joint probability distribution functions involving quantities with a parametric orientation dependence. The technique’s efficiency also allows for practical least-squares fitting of experimental 2D solid-state nuclear magnetic resonance (NMR) datasets. The simulation method is illustrated for select 2D NMR methods, and a least-squares analysis is demonstrated in the extraction of paramagnetic shift and quadrupolar coupling tensors and their relative orientation from the experimental shifting-d echo 2H NMR spectrum of a NiCl2 · 2D2O salt.more » « less
-
Abstract All‐solid‐state rechargeable sodium (Na)‐ion batteries are promising for inexpensive and high‐energy‐density large‐scale energy storage. In this contribution, new Na solid electrolytes, Na3−yPS4−xClx, are synthesized with a strategic approach, which allows maximum substitution of Cl for S (x= 0.2) without significant compromise of structural integrity or Na deficiency. A maximum conductivity of 1.96 mS cm−1at 25 °C is achieved for Na3.0PS3.8Cl0.2, which is two orders of magnitude higher compared with that of tetragonal Na3PS4(t‐Na3PS4). The activation energy (Ea) is determined to be 0.19 eV. Ab initio molecular dynamics simulations shed light on the merit of maximizing Cl‐doping while maintaining low Na deficiency in enhanced Na‐ion conduction. Solid‐state nuclear magnetic resonance (NMR) characterizations confirm the successful substitution of Cl for S and the resulting change of P oxidation state from 5+ to 4+, which is also verified by spin moment analysis. Ion transport pathways are determined with a tracer‐exchange NMR method. The functional detects that promote Na ‐ion transport are maximized for further improvement in ionic conductivity. Full‐cell performance is demonstrated using Na/Na3.0PS3.8Cl0.2/Na3V2(PO4)3with a reversible capacity of ≈100 mAh g‐1at room temperature.more » « less
-
Abstract In this work, we describe the easy synthesis of mercury complexes with the 1,5,9‐trimesityldipyrromethene (MesDPM) ligand. The compounds were characterized using standard analytic methods such as NMR, IR, as well as UV/Vis spectroscopy. The molecular structures in solid state were determined by single‐crystal X‐ray diffraction analysis (SC‐XRD) experiments. In addition, the199Hg NMR chemical shifts were determined by measurements and quantum chemical calculations.more » « less
An official website of the United States government
