skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temperature dependence of photophysical properties of a dinuclear C^N-cyclometalated Pt( ii ) complex with an intimate Pt–Pt contact. Zero-field splitting and sub-state decay rates of the lowest triplet
The temperature dependence (1.7 K < T < 100 K) of emission decay is reported for the first time for a type of di-nuclear Pt complex featuring a metal–metal-to-ligand charge transfer (MMLCT) lowest energy transition that arises from a strong Pt–Pt interaction. The effect of local variation of the host/guest cage in a polymer matrix upon the phosphorescence decay time constants is characterized by the Kohlrausch–Williams–Watts function. The temperature dependence of the average decay time constants is fit by a Boltzmann-type expression to obtain the average zero-field splittings and individual sublevel decay rates of the photoluminescent triplet excited state.  more » « less
Award ID(s):
1665033
PAR ID:
10103955
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
20
Issue:
38
ISSN:
1463-9076
Page Range / eLocation ID:
25096 to 25104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A phase transition material, VO 2 , with a semiconductor-to-metal transition (SMT) near 341 K (68 °C) has attracted significant research interest because of drastic changes in its electrical resistivity and optical dielectric properties. To address its application needs at specific temperatures, tunable SMT temperatures are highly desired. In this work, effective transition temperature ( T c ) tuning of VO 2 has been demonstrated via a novel Pt : VO 2 nanocomposite design, i.e. , uniform Pt nanoparticles (NPs) embedded in the VO 2 matrix. Interestingly, a bidirectional tuning has been achieved, i.e. , the transition temperature can be systematically tuned to as low as 329.16 K or as high as 360.74 K, with the average diameter of Pt NPs increasing from 1.56 to 4.26 nm. Optical properties, including transmittance ( T %) and dielectric permittivity ( ε ′) were all effectively tuned accordingly. All Pt : VO 2 nanocomposite thin films maintain reasonable SMT properties, i.e. sharp phase transition and narrow width of thermal hysteresis. The bidirectional T c tuning is attributed to two factors: the reconstruction of the band structure at the Pt : VO 2 interface and the change of the Pt : VO 2 phase boundary density. This demonstration sheds light on phase transition tuning of VO 2 at both room temperature and high temperature, which provides a promising approach for VO 2 -based novel electronics and photonics operating under specific temperatures. 
    more » « less
  2. Dinuclear d 8 Pt( ii ) complexes, where two mononuclear square planar Pt( ii ) units are bridged in an “A-frame” geometry, possess photophysical properties characterised by either metal-to-ligand-(MLCT) or metal–metal–ligand-to-ligand charge transfer (MMLCT) transitions determined by the distance between the two Pt( ii ) centres. When using 8-hydroxyquinoline (8HQH) as the bridging ligand to construct novel dinuclear complexes with general formula [C^NPt(μ-8HQ)] 2 , where C^N is either 2-phenylpyridine (1) or 7,8-benzoquinoline (2), triplet ligand-centered ( 3 LC) photophysics results echoing that in a mononuclear model chromophore, [Pt(8HQ) 2 ] (3). The lengthened Pt–Pt distances of 3.255 Å (1) and 3.243 Å (2) results in a lowest energy absorption centred around 480 nm assigned as having mixed LC/MLCT character by TD-DFT, mirroring the visible absorption spectrum of 3. Additionally, 1 and 2 exhibit 3 LC photoluminescence with limited quantum yields (0.008) from broad transitions centred near 680 nm. Photoexcitation of 1–3 leads to an initially prepared excited state that relaxes within 15 ps to a 3 LC excited state centred on the 8HQ bridge, which then persists for several microseconds. All the experimental results correspond well with DFT electronic structure calculations. 
    more » « less
  3. Ultrafast excited state processes of transition metal complexes (TMCs) are governed by complicated interplays between electronic and nuclear dynamics, which demand a detailed understanding to achieve optimal functionalities of photoactive TMC-based materials for many applications. In this work, we investigated a cyclometalated platinum( ii ) dimer known to undergo a Pt–Pt bond contraction in the metal–metal-to-ligand-charge-transfer (MMLCT) excited state using femtosecond broadband transient absorption (fs-BBTA) spectroscopy in combination with geometry optimization and normal mode calculations. Using a sub-20 fs pump and broadband probe pulses in fs-BBTA spectroscopy, we were able to correlate the coherent vibrational wavepacket (CVWP) evolution with the stimulated emission (SE) dynamics of the 1 MMLCT state. The results demonstrated that the 145 cm −1 CVWP motions with the damping times of ∼0.9 ps and ∼2 ps originate from coherent Pt–Pt stretching vibrations in the singlet and triplet MMLCT states, respectively. On the basis of excited state potential energy surface calculations in our previous work, we rationalized that the CVWP transfer from the Franck–Condon (FC) state to the 3 MMLCT state was mediated by a triplet ligand-centered ( 3 LC) intermediate state through two step intersystem crossing (ISC) on a time scale shorter than a period of the Pt–Pt stretching wavepacket motions. Moreover, it was found that the CVWP motion had 110 cm −1 frequency decays with the damping time of ∼0.2 ps, matching the time constant of 0.253 ps, corresponding to a redshift in the SE feature at early times. This observation indicates that the Pt–Pt bond contraction changes the stretching frequency from 110 to 145 cm −1 and stabilizes the 1 MMLCT state relative to the 3 LC state with a ∼0.2 ps time scale. Thus, the ultrafast ISC from the 1 MMLCT to the 3 LC states occurs before the Pt–Pt bond shortening. The findings herein provide insight into understanding the impact of Pt–Pt bond contraction on the ultrafast branching of the 1 MMLCT population into the direct ( 1 MMLCT → 3 MMLCT) and indirect ISC pathways ( 1 MMLCT → 3 LC → 3 MMLCT) in the Pt( ii ) dimer. These results revealed intricate excited state electronic and nuclear motions that could steer the reaction pathways with a level of detail that has not been achieved before. 
    more » « less
  4. Abstract Lead halide perovskites (LHPs), have attracted considerable attention across various applications owing to their exceptional optoelectronic properties. However, the main challenge hindering the broad adoption of lead halide perovskites lies in their stability and toxicity. In this review, we summarize the outstanding properties of platinum (Pt) halide perovskites, with a particular focus on the stability and applications of Cs2PtI6and its derivatives. Cs2PtI6has shown promising efficiency for photovoltaic devices, as well as photoelectrochemical water splitting with stable behavior in acid or basic conditions. Cs2PtI6also shows promise in gas sensing and thermoelectric devices. The emergence of 2D Pt (II) halide perovskites opens up new avenues for environmentally friendly materials for photonic and optoelectronic devices like room temperature phosphoresce and triplet‐triplet annihilation (TTA) based up‐conversion. image 
    more » « less
  5. Type II Si clathrate is a Si-based, crystalline alternative to diamond silicon with interesting optoelectronic properties. Here, a pulsed electron paramagnetic resonance study of the spin dynamics of sodium-doped, type II NaxSi136 silicon clathrate films is reported. Focusing on the hyperfine lines of isolated Na atoms, the temperature dependence of the electron spin dynamics is examined from 6 to 25 K. The measurements exhibit multi-exponential decay, indicating multiple spin relaxation rates in the system. As expected, spin relaxation time (T1) increases rapidly with decreasing temperature, reaching ∼300 μs at 6.4 K. The phase memory (TM) shows less temperature dependence with a value of ∼3 μs at the same temperature. The temperature dependence of T1 exhibits Arrhenius behavior in the measurement range consistent with an Orbach pathway. There are strong similarities to the spin behavior of other defect donors in diamond silicon. The results provide insights into the potential of Si clathrates for spin-based applications. 
    more » « less