skip to main content

Title: Temperature dependence of photophysical properties of a dinuclear C^N-cyclometalated Pt( ii ) complex with an intimate Pt–Pt contact. Zero-field splitting and sub-state decay rates of the lowest triplet
The temperature dependence (1.7 K < T < 100 K) of emission decay is reported for the first time for a type of di-nuclear Pt complex featuring a metal–metal-to-ligand charge transfer (MMLCT) lowest energy transition that arises from a strong Pt–Pt interaction. The effect of local variation of the host/guest cage in a polymer matrix upon the phosphorescence decay time constants is characterized by the Kohlrausch–Williams–Watts function. The temperature dependence of the average decay time constants is fit by a Boltzmann-type expression to obtain the average zero-field splittings and individual sublevel decay rates of the photoluminescent triplet excited state.
Authors:
; ; ; ;
Award ID(s):
1665033
Publication Date:
NSF-PAR ID:
10103955
Journal Name:
Physical Chemistry Chemical Physics
Volume:
20
Issue:
38
Page Range or eLocation-ID:
25096 to 25104
ISSN:
1463-9076
Sponsoring Org:
National Science Foundation
More Like this
  1. A phase transition material, VO 2 , with a semiconductor-to-metal transition (SMT) near 341 K (68 °C) has attracted significant research interest because of drastic changes in its electrical resistivity and optical dielectric properties. To address its application needs at specific temperatures, tunable SMT temperatures are highly desired. In this work, effective transition temperature ( T c ) tuning of VO 2 has been demonstrated via a novel Pt : VO 2 nanocomposite design, i.e. , uniform Pt nanoparticles (NPs) embedded in the VO 2 matrix. Interestingly, a bidirectional tuning has been achieved, i.e. , the transition temperature can be systematically tuned to as low as 329.16 K or as high as 360.74 K, with the average diameter of Pt NPs increasing from 1.56 to 4.26 nm. Optical properties, including transmittance ( T %) and dielectric permittivity ( ε ′) were all effectively tuned accordingly. All Pt : VO 2 nanocomposite thin films maintain reasonable SMT properties, i.e. sharp phase transition and narrow width of thermal hysteresis. The bidirectional T c tuning is attributed to two factors: the reconstruction of the band structure at the Pt : VO 2 interface and the change of the Pt : VO 2 phase boundary density. This demonstration sheds light on phasemore »transition tuning of VO 2 at both room temperature and high temperature, which provides a promising approach for VO 2 -based novel electronics and photonics operating under specific temperatures.« less
  2. Ultrafast excited state processes of transition metal complexes (TMCs) are governed by complicated interplays between electronic and nuclear dynamics, which demand a detailed understanding to achieve optimal functionalities of photoactive TMC-based materials for many applications. In this work, we investigated a cyclometalated platinum( ii ) dimer known to undergo a Pt–Pt bond contraction in the metal–metal-to-ligand-charge-transfer (MMLCT) excited state using femtosecond broadband transient absorption (fs-BBTA) spectroscopy in combination with geometry optimization and normal mode calculations. Using a sub-20 fs pump and broadband probe pulses in fs-BBTA spectroscopy, we were able to correlate the coherent vibrational wavepacket (CVWP) evolution with the stimulated emission (SE) dynamics of the 1 MMLCT state. The results demonstrated that the 145 cm −1 CVWP motions with the damping times of ∼0.9 ps and ∼2 ps originate from coherent Pt–Pt stretching vibrations in the singlet and triplet MMLCT states, respectively. On the basis of excited state potential energy surface calculations in our previous work, we rationalized that the CVWP transfer from the Franck–Condon (FC) state to the 3 MMLCT state was mediated by a triplet ligand-centered ( 3 LC) intermediate state through two step intersystem crossing (ISC) on a time scale shorter than a period of themore »Pt–Pt stretching wavepacket motions. Moreover, it was found that the CVWP motion had 110 cm −1 frequency decays with the damping time of ∼0.2 ps, matching the time constant of 0.253 ps, corresponding to a redshift in the SE feature at early times. This observation indicates that the Pt–Pt bond contraction changes the stretching frequency from 110 to 145 cm −1 and stabilizes the 1 MMLCT state relative to the 3 LC state with a ∼0.2 ps time scale. Thus, the ultrafast ISC from the 1 MMLCT to the 3 LC states occurs before the Pt–Pt bond shortening. The findings herein provide insight into understanding the impact of Pt–Pt bond contraction on the ultrafast branching of the 1 MMLCT population into the direct ( 1 MMLCT → 3 MMLCT) and indirect ISC pathways ( 1 MMLCT → 3 LC → 3 MMLCT) in the Pt( ii ) dimer. These results revealed intricate excited state electronic and nuclear motions that could steer the reaction pathways with a level of detail that has not been achieved before.« less
  3. Magnetotransport and ferromagnetism in thin films of Co2Si nanoclusters are investigated experimentally and theoretically. The nanoclusters are fabricated by an inert-gas condensation-type cluster-deposition method and have an average size of 11.3 nm. Unlike the bulk Co2Si that exhibits a very weak net magnetic moment only below 10 K, the nanoclusters exhibit room-temperature ferromagnetism with a substantial saturation magnetization. Key features of the system are its closeness to the Stoner transition, magnetic moments induced by spin polarization starting from surface atoms, and nonuniaxial anisotropy associated with the orthorhombic crystal structure of Co2Si. A method is introduced to determine the effective anisotropy using the experimental magnetization data of this complex system and its relationship with the two lowest-order nonuniaxial anisotropy constants. On decreasing temperature from 300 K, the nanoclusters show electron-transport properties unusual for a ferromagnetic metal, including an increase of Hall resistivity and a nonmonotonic change of negative magnetoresistance with a peak at around 100 K. The underlying physics is explained on the basis of the large polarization of surface spins and variation in the degree of their misalignments due to temperature-dependent effective anisotropy.
  4. We investigate electronic and optoelectronic properties of few-layer palladium diselenide (PdSe 2 ) phototransistors through spatially-resolved photocurrent measurements. A strong photocurrent resonance peak is observed at 1060 nm (1.17 eV), likely attributed to indirect optical transitions in few-layer PdSe 2 . More interestingly, when the thickness of PdSe 2 flakes increases, more and more photocurrent resonance peaks appear in the near-infrared region, suggesting strong interlayer interactions in few-layer PdSe 2 help open up more optical transitions between the conduction and valence bands of PdSe 2 . Moreover, gate-dependent measurements indicate that remarkable photocurrent responses at the junctions between PdSe 2 and metal electrodes primarily result from the photovoltaic effect when a PdSe 2 phototransistor is in the off-state and are partially attributed to the photothermoelectric effect when the device turns on. We also demonstrate PdSe 2 devices with a Seebeck coefficient as high as 74 μV K −1 at room temperature, which is comparable with recent theoretical predications. Additionally, we find that the rise and decay time constants of PdSe 2 phototransistors are ∼156 μs and ∼163 μs, respectively, which are more than three orders of magnitude faster than previous PdSe 2 work and two orders of magnitude over othermore »noble metal dichalcogenide phototransistors, offering new avenues for engineering future optoelectronics.« less
  5. Temperature-dependent continuous-excitation and time-resolved photoluminescence are studied to probe carrier localization and recombination in nearly strain-balanced m-plane In0.09Ga0.91N/Al0.19Ga0.81N multi-quantum wells grown by plasma-assisted molecular-beam epitaxy. An average localization depth of 21 meV is estimated for the undoped sample. This depth is much smaller than the reported values in polar structures and m-plane InGaN quantum wells. As part of this study, temperature and magnetic field dependence of time-resolved photoluminescence is performed. At 2 K, an initial fast decay time of 0.3 ns is measured for both undoped and doped structures. The undoped sample also exhibits a slow decay component with a time scale of 2.2 ns. The existence of two relaxation paths in the undoped structure can be attributed to different localization centers. The fast relaxation decays are relatively insensitive to external magnetic fields, while the slower relaxation time constant decreases significantly with increasing magnetic fields. The fast decay time scale in the undoped sample is likely due to indium fluctuations in the quantum well. The slow decay time may be related to carrier localization in the barriers. The addition of doping leads to a single fast decay time likely due to stronger exciton localization in the InGaN quantum wells.