skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Iodide-induced differential control of metal ion reduction rates: synthesis of terraced palladium–copper nanoparticles with dilute bimetallic surfaces
Metal nanoparticles possessing a high density of atomic steps and edge sites provide an increased population of undercoordinated surface atoms, which can enhance the catalytic activity of these materials compared to low-index faceted or bulk materials. Simply increasing reactivity, however, can lead to a concurrent increase in undesirable, non-selective side products. The incorporation of a second metal at these reactive stepped features provides an ideal avenue for finely attenuating reactivity to increase selectivity. A major challenge in synthesizing bimetallic nanomaterials with tunable surface features that are desirable for fundamental catalytic studies is a need to bridge differences in precursor reduction potentials and metal lattice parameters in structures containing both a noble metal and a non-noble metal. We report the use of low micromolar concentrations of iodide ions as a means of differentially controlling the relative reduction rates of a noble metal (palladium) and a non-noble metal (copper). The iodide in this system increases the rate of reduction of palladium ions while concurrently slowing the rate of copper ion reduction, thus providing a degree of control that is not achievable using most other reported means of tuning metal ion reduction rate. This differential control of metal ion reduction afforded by iodide ions enables access to nanoparticle growth conditions in which control of palladium nanoparticle growth by copper underpotential deposition becomes possible, leading to the generation of unique terraced bimetallic particles. Because of their bimetallic surface composition, these terraced nanoparticles exhibit increased selectivity to acetaldehyde in gas phase ethanol oxidation.  more » « less
Award ID(s):
1725491
PAR ID:
10103962
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
6
Issue:
44
ISSN:
2050-7488
Page Range / eLocation ID:
22179 to 22188
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the competing effects of growth-directing additives, such as halide ions, on particle formation in solution phase metal nanoparticle syntheses is an ongoing challenge. Further, trace halide impurities are known to have a drastic impact on particle morphology as well as reproducibility. Herein, we employ a “halide-free” platform as an analogue to commonly used halide-containing surfactants and metal precursors to isolate and study the effects of micromolar concentrations of halide ions (chloride, bromide, and iodide) on the rate of metal ion reduction. In the absence of competing halides from precursors and surfactants, we observe a catalytic effect of low concentrations of halide ions on the rate of metal ion reduction, an influence which is fundamentally different from the previously reported role of halides in metal nanoparticle growth. We propose that this halide-assisted metal ion reduction proceeds via the formation of a halide bridge which facilitates the adsorption of the metal precursor to a growing nanoparticle and, subsequently, electron transfer from the particle surface. We then demonstrate that this process is operative not only in the well-controlled “halide-free” platform, but also in syntheses involving high concentrations of halide-containing surfactants as well as metal precursors with halide ligands. Importantly, this study shows that halide-assisted metal ion reduction can be extended to bimetallic systems and provides a handle for the directed differential control of metal ion reduction in one-pot co-reduction syntheses. 
    more » « less
  2. High entropy alloy (HEA) nanoparticles hold promise as active and durable (electro)catalysts. Understanding their formation mechanism will enable rational control over composition and atomic arrangement of multimetallic catalytic surface sites to maximize their activity. While prior reports have attributed HEA nanoparticle formation to nucleation and growth, there is a dearth of detailed mechanistic investigations. Here we utilize liquid phase transmission electron microscopy (LPTEM), systematic synthesis, and mass spectrometry (MS) to demonstrate that HEA nanoparticles form by aggregation of metal cluster intermediates. AuAgCuPtPd HEA nanoparticles are synthesized by aqueous co-reduction of metal salts with sodium borohydride in the presence of thiolated polymer ligands. Varying the metal : ligand ratio during synthesis showed that alloyed HEA nanoparticles formed only above a threshold ligand concentration. Interestingly, stable single metal atoms and sub-nanometer clusters are observed by TEM and MS in the final HEA nanoparticle solution, suggesting nucleation and growth is not the dominant mechanism. Increasing supersaturation ratio increased particle size, which together with observations of stable single metal atoms and clusters, supported an aggregative growth mechanism. Direct real-time observation with LPTEM imaging showed aggregation of HEA nanoparticles during synthesis. Quantitative analyses of the nanoparticle growth kinetics and particle size distribution from LPTEM movies were consistent with a theoretical model for aggregative growth. Taken together, these results are consistent with a reaction mechanism involving rapid reduction of metal ions into sub-nanometer clusters followed by cluster aggregation driven by borohydride ion induced thiol ligand desorption. This work demonstrates the importance of cluster species as potential synthetic handles for rational control over HEA nanoparticle atomic structure. 
    more » « less
  3. null (Ed.)
    Nanoparticle catalysts display optimal mass activity due to their high surface to volume ratio and tunable size and structure. However, control of nanoparticle size requires the presence of surface ligands, which significantly influence catalytic performance. In this work, we investigate the effect of dodecanethiol on the activity, selectivity, and stability of Au nanoparticles for electrochemical carbon dioxide reduction (CO 2 R). Results show that dodecanethiol on Au nanoparticles significantly enhances selectivity and stability with minimal loss in activity by acting as a CO 2 -permeable membrane, which blocks the deposition of metal ions that are otherwise responsible for rapid deactivation. Although dodecanethiol occupies 90% or more of the electrochemical active surface area, it has a negligible effect on the partial current density to CO, indicating that it specifically does not block the active sites responsible for CO 2 R. Further, by preventing trace ion deposition, dodecanethiol stabilizes CO production on Au nanoparticles under conditions where CO 2 R selectivity on polycrystalline Au rapidly decays to zero. Comparison with other surface ligands and nanoparticles shows that this effect is specific to both the chemical identity and the surface structure of the dodecanethiol monolayer. To demonstrate the potential of this catalyst, CO 2 R was performed in electrolyte prepared from ambient river water, and dodecanethiol-capped Au nanoparticles produce more than 100 times higher CO yield compared to clean polycrystalline Au at identical potential and similar current. 
    more » « less
  4. Abstract We synthesized the silver‐decorated copper microsphere via the hydrothermal method followed by photoreduction of silver ions. Sub 100 nm Ag nanoparticles anchored on the surface of Cu microspheres enhance the electrochemical performance and the selectivity of the CO2reduction into CH4. Incorporating Ag nanoparticles onto Cu lowers the charge transfer resistance, enhancing the catalyst's conductivity and active site and increasing the rate of CO2reduction. The faradaic efficiency of silver nanoparticles decorated copper microsphere for methane was 70.94 %, almost twice that of a copper microsphere (44 %). The electrochemical performance showed higher catalytic properties, stability, and faradaic efficiency of silver‐decorated copper microspheres. 
    more » « less
  5. The rational development of catalytic reactions involving cooperative behavior between two catalytic reactive sites represents a frontier area of research from which novel reactivity and selectivity patterns emerge. Within this context, this Feature highlights the development of a cooperative system involving transition metal Lewis acid/base pairs. Bimetallic systems consisting of copper carbene Lewis acids and metal carbonyl anion Lewis bases, (NHC)Cu–[M CO ], are easily synthesized from readily available organometallic building blocks (NHC = N-heterocyclic carbene; [M CO ] − = metal carbonyl anion, e.g. [FeCp(CO) 2 ] − , [Mn(CO) 5 ] − , etc. ). Stoichiometric reactivity studies indicate that the dative Cu←M bonds in these systems are labile towards heterolysis under mild conditions, thus providing in situ access both to polar metal–metal bonds and to “frustrated” transition metal Lewis acid/base pairs as dictated by reaction conditions. Catalytic transformations ranging from C–C and C–B coupling reactions to hydrogenation and other reductions have been developed from both manifolds: bimetallic catalysis involving (a) binuclear intermediates engaging in cooperative bond activation and formation, and (b) orthogonal mononuclear intermediates that operate in either tandem or co-dependent manners. Preliminary indications point to the future emergence of novel reactivity and selectivity patterns as these new motifs undergo continued development, and additionally demonstrate that the relative matching of two reactive sites provides a method for controlling catalytic behavior. Collectively, these results highlight the fundamental importance of exploring unconventional catalytic paradigms. 
    more » « less