skip to main content


Title: Syntheses of Bis -Triazole Linked Carbohydrate Based Macrocycles and Their Applications for Accelerating Copper Sulfate Mediated Click Reaction: Syntheses of Bis -Triazole Linked Carbohydrate Based Macrocycles and Their Applications for Accelerating Copper Sulfate Mediated Click Reaction
Award ID(s):
1808609
NSF-PAR ID:
10104020
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
European Journal of Organic Chemistry
Volume:
2019
Issue:
6
ISSN:
1434-193X
Page Range / eLocation ID:
1189 to 1194
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 1,3-Bis(6-bromohexyloxy)benzene, 2,7-bis(6-bromohexyloxy)naphthalene, 1,3-bis(4-bromomethylbenzyloxy)benzene, and 1,3-bis(3-bromomethylbenzyloxy)benzene were prepared via Williamson ether synthesis using resorcinol or 2,7-dihydroxynaphthalene and 1,6-dibromohexane, 1,4-bis(bromomethyl)benzene, or 1,3-bis(bromomethyl)benzene (21–47 % yield). These dibromides were condensed with 2,9-bis(4-hydroxyphenyl)-1,10-phenanthroline in the presence of K2CO3 to give the corresponding 31- to 35-membered macrocycles (3a–d, 22–63 % yield). When 3a–d were treated with CuI, mononuclear 1 : 1 complexes formed, in which the CuI chelates to the nitrogen donor atoms of the phenanthroline moiety (4a–d, 40–80 % yield). The crystal structures of 3a–c and 4a–c were determined and analyzed using density functional theory calculations and in the context of rotaxanes that could be formed by treatment of 4a–d with terminal alkynes (e.g. macrocycle dimensions, void volumes). The copper and iodide atoms in 4a–c significantly protrude from the least-squares plane of the phenanthroline moiety (0.46–0.63 Å and 1.65–2.07 Å). 
    more » « less
  2. Abstract

    Mechano‐activated chemistry is a powerful tool for remodeling of synthetic polymeric materials, however, few reactions are currently available. Here we show that using piezochemical reduction of a CuII‐based pre‐catalyst, a step‐growth polymerization occurs via the copper catalyzed azide–alkyne cycloaddition (CuAAC) reaction to form a linear polytriazole. Furthermore, we show that a linear polymer can be crosslinked mechanochemically using the same chemistry to form a solid organogel. We envision that this chemistry can be used to harness mechanical energy for constructive purposes in polymeric materials.

     
    more » « less
  3. Abstract

    Mechano‐activated chemistry is a powerful tool for remodeling of synthetic polymeric materials, however, few reactions are currently available. Here we show that using piezochemical reduction of a CuII‐based pre‐catalyst, a step‐growth polymerization occurs via the copper catalyzed azide–alkyne cycloaddition (CuAAC) reaction to form a linear polytriazole. Furthermore, we show that a linear polymer can be crosslinked mechanochemically using the same chemistry to form a solid organogel. We envision that this chemistry can be used to harness mechanical energy for constructive purposes in polymeric materials.

     
    more » « less