skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatiotemporal coupling of attosecond pulses
The shortest light pulses produced to date are of the order of a few tens of attoseconds, with central frequencies in the extreme UV range and bandwidths exceeding tens of electronvolts. They are often produced as a train of pulses separated by half the driving laser period, leading in the frequency domain to a spectrum of high, odd-order harmonics. As light pulses become shorter and more spectrally wide, the widely used approximation consisting of writing the optical waveform as a product of temporal and spatial amplitudes does not apply anymore. Here, we investigate the interplay of temporal and spatial properties of attosecond pulses. We show that the divergence and focus position of the generated harmonics often strongly depend on their frequency, leading to strong chromatic aberrations of the broadband attosecond pulses. Our argument uses a simple analytical model based on Gaussian optics, numerical propagation calculations, and experimental harmonic divergence measurements. This effect needs to be considered for future applications requiring high-quality focusing while retaining the broadband/ultrashort characteristics of the radiation.  more » « less
Award ID(s):
1713671
PAR ID:
10104148
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
11
ISSN:
0027-8424
Page Range / eLocation ID:
4779 to 4787
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sub-optical-cycle dynamics of dense electron bunches in relativistic-intensity laser–solid interactions lead to the emission of high-order harmonics and attosecond light pulses. The capacity of particle-in-cell simulations to accurately model these dynamics is essential for the prediction of emission properties because the attosecond pulse intensity depends on the electron density distribution at the time of emission and on the temporal distribution of individual electron Lorentz-factors in an emitting electron bunch. Here, we show that in one-dimensional collisionless simulations, the peak density of the emitting electron bunch increases with the increase in the spatial resolution of the simulation grid. When collisions are added to the model, the peak electron density becomes independent of the spatial resolution. Collisions are shown to increase the spread of the peaks of Lorentz-factors of emitting electrons in time, especially in the regimes far from optimum generation conditions, thus leading to lower intensities of attosecond pulses as compared to those obtained in collisionless simulations. 
    more » « less
  2. Synopsis We suggest a technique to amplify a train of attosecond pulses, produced via high-harmonic generation of an infrared laser field, in active medium of a plasma-based X-ray laser driven by a replica of the same IR field as used to produce high harmonics forming a train of attosecond pulses. 
    more » « less
  3. Abstract Amplification of attosecond pulses produced via high harmonic generation is a formidable problem since none of the amplifiers can support the corresponding PHz bandwidth. Producing the well defined polarization state common for a set of harmonics required for formation of the circularly/elliptically polarized attosecond pulses (which are on demand for dynamical imaging and coherent control of the spin flip processes) is another big challenge. In this work we show how both problems can be tackled simultaneously on the basis of the same platform, namely, the plasma-based X-ray amplifier whose resonant transition frequency is modulated by an infrared field. 
    more » « less
  4. Abstract High-order harmonic generation (HHG) has become an indispensable process for generating attosecond pulse trains and single attosecond pulses used in the observation of nuclear and electronic motion. As such, improved control of the HHG process is desirable, and one such possibility for this control is through the use of structured laser pulses. We present numerical results from solving the one-dimensional time-dependent Schrödinger equation for HHG from hydrogen using Airy and Gaussian pulses that differ only in their spectral phase. Airy pulses have identical power spectra to Gaussian pulses, but different spectral phases and temporal envelopes. We show that the use of Airy pulses results in less ground state depletion compared to the Gaussian pulse, while maintaining harmonic yield and cutoff. Our results demonstrate that Airy pulses with higher intensity can produce similar HHG spectra to lower intensity Gaussian pulses without depleting the ground state. The different temporal envelopes of the Gaussian and Airy pulses lead to changes in the dynamics of the HHG process, altering the time-dependence of the ground state population and the emission times of the high harmonics. Graphical abstract 
    more » « less
  5. In a recent work (Antonov et al., Physical Review Letters 123, 243903 (2019)), it was shown that it is possible to amplify a train of attosecond pulses, which are produced from the radiation of high harmonics of the infrared field of the fundamental frequency, in the active medium of a plasma-based X-ray laser modulated by a replica of the infrared field of the same frequency. In this paper, we show that much higher amplification can be achieved using the second harmonic of the fundamental frequency for modulating of a hydrogen-like active medium. The physical reason for such enhanced amplification is the possibility to use all (even and odd) sidebands induced in the gain spectrum in the case of the modulating field of the doubled fundamental frequency, while only one set of sidebands (either even or odd) could participate in amplification in the case of the modulating field of the fundamental frequency due to the fact that the spectral components of the high-harmonic field are separated by twice the fundamental frequency. Using the plasma of hydrogen-like C5+ ions with an inverted transition wavelength of 3.38 nm in the water window as an example, it is shown that the use of a modulating field at a doubled fundamental frequency makes it possible to increase the intensity of amplified attosecond pulses by an order of magnitude in comparison with the previously studied case of a fundamental frequency modulating field. 
    more » « less