skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intrinsic ferromagnetism and topological properties in two-dimensional rhenium halides
The realization of robust intrinsic ferromagnetism in two-dimensional (2D) materials in conjunction with the intriguing quantum anomalous Hall (QAH) effect has provided a fertile ground for novel physics and for the next-generation spintronic and topological devices. On the basis of density functional theory (DFT), we predict that layered 5d transition-metal heavier halides (TMHs), such as ReX 3 (X = Br, I), show intrinsic ferromagnetism with high spin polarization and high Curie temperatures. The outstanding dynamic and thermodynamic stability ensures their experimental feasibility. The strong spin–orbit coupling (SOC) of Re makes the electronic structure of the ReI 3 monolayer topologically nontrivial with a large Chern number ( C = −4). DFT+ U calculations reveal that the 2D system undergoes a nontrivial to trivial transition with increasing on-site Hubbard Coulomb interaction U through the emergence of a Dirac cone. This transition is corroborated by the emergence of chiral edge states and the anomalous Hall conductivity. These findings not only demonstrate room-temperature ferromagnetism in atomically thin 5d TMHs, but also pave the way for the potential realization of the QAH effect with high Chern numbers in pristine 2D layers.  more » « less
Award ID(s):
1828019
PAR ID:
10104174
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Nanoscale
Volume:
11
Issue:
13
ISSN:
2040-3364
Page Range / eLocation ID:
6101 to 6107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A major recent breakthrough in materials science is the emergence of intrinsic magnetism in two-dimensional (2D) crystals, which opens the door to more cutting-edge fields in the 2D family and could eventually lead to novel data-storage and information devices with further miniaturization. Herein we propose an experimentally feasible 2D material, Fe 2 I 2 , which is an intrinsic room-temperature ferromagnet exhibiting perpendicular magnetic anisotropy (PMA). Using first-principles calculations, we demonstrate that single-layer (SL) Fe 2 I 2 is a spin-gapless semiconductor with a spin-polarized Dirac cone and linear energy dispersion in one spin channel, exhibiting promising dissipation-less transport properties with a Fermi velocity up to 6.39 × 10 5 m s −1 . Our results reveal that both strain and ferroelectric polarization switching could induce an out-of- to in-plane spin reorientation in the 2D Fe 2 I 2 layer, revealing its advantage in assembling spintronic devices. In addition, spin–orbit coupling (SOC) triggers a topologically nontrivial band gap of 301 meV with a nonzero Chern number (| C | = 2), giving rise to a robust quantum anomalous Hall (QAH) state. The 2D crystal also exhibits high carrier mobilites of 0.452 × 10 3 and 0.201 × 10 3 cm 2 V −1 s −1 for the electrons and holes, respectively. The combination of these unique properties renders the 2D Fe 2 I 2 ferromagnet a promising platform for high efficiency multi-functional spintronic applications. 
    more » « less
  2. Abstract The physical realization of Chern insulators is of fundamental and practical interest, as they are predicted to host the quantum anomalous Hall (QAH) effect and topologically protected chiral edge states which can carry dissipationless current. Current realizations of the QAH state often require complex heterostructures and sub-Kelvin temperatures, making the discovery of intrinsic, high temperature QAH systems of significant interest. In this work we show that time-reversal symmetry breaking Weyl semimetals, being essentially stacks of Chern insulators with inter-layer coupling, may provide a new platform for the higher temperature realization of robust chiral edge states. We present combined scanning tunneling spectroscopy and theoretical investigations of the magnetic Weyl semimetal, Co3Sn2S2. Using modeling and numerical simulations we find that depending on the strength of the interlayer coupling, chiral edge states can be localized on partially exposed kagome planes on the surfaces of a Weyl semimetal. Correspondingly, our dI/dVmaps on the kagome Co3Sn terraces show topological states confined to the edges which display linear dispersion. This work provides a new paradigm for realizing chiral edge modes and provides a pathway for the realization of higher temperature QAH effect in magnetic Weyl systems in the two-dimensional limit. 
    more » « less
  3. Abstract One-dimensional chiral interface channels can be created at the boundary of two quantum anomalous Hall (QAH) insulators with different Chern numbers. Such a QAH junction may function as a chiral edge current distributer at zero magnetic field, but its realization remains challenging. Here, by employing an in-situ mechanical mask, we use molecular beam epitaxy to synthesize QAH insulator junctions, in which two QAH insulators with different Chern numbers are connected along a one-dimensional junction. For the junction between Chern numbers of 1 and −1, we observe quantized transport and demonstrate the appearance of the two parallel propagating chiral interface channels along the magnetic domain wall at zero magnetic field. For the junction between Chern numbers of 1 and 2, our quantized transport shows that a single chiral interface channel appears at the interface. Our work lays the foundation for the development of QAH insulator-based electronic and spintronic devices and topological chiral networks. 
    more » « less
  4. The quantum anomalous Hall effect (QAHE) is a robust topological phenomenon that features quantized Hall resistance at zero magnetic field. We report the QAHE in a rhombohedral pentalayer graphene-monolayer tungsten disulfide (WS2) heterostructure. Distinct from other experimentally confirmed QAHE systems, this system has neither magnetic element nor moiré superlattice effect. The QAH states emerge at charge neutrality and feature Chern numbersC= ±5 at temperatures of up to about 1.5 kelvin. This large QAHE arises from the synergy of the electron correlation in intrinsic flat bands of pentalayer graphene, the gate-tuning effect, and the proximity-induced Ising spin-orbit coupling. Our experiment demonstrates the potential of crystalline two-dimensional materials for intertwined electron correlation and band topology physics and may enable a route for engineering chiral Majorana edge states. 
    more » « less
  5. Abstract Magnetic topological states refer to a class of exotic phases in magnetic materials with the non‐trivial topological property determined by magnetic spin configurations. An example of such states is the quantum anomalous Hall (QAH) state, which is a zero magnetic field manifestation of the quantum Hall effect. Current research in this direction focuses on QAH insulators with a thickness of less than 10 nm. Here, molecular beam epitaxy (MBE) is employed to synthesize magnetic TI trilayers with a thickness of up to ≈106 nm. It is found that these samples exhibit well‐quantized Hall resistance and vanishing longitudinal resistance at zero magnetic field. By varying the magnetic dopants, gate voltages, temperature, and external magnetic fields, the properties of these thick QAH insulators are examined and the robustness of the 3D QAH effect is demonstrated. The realization of the well‐quantized 3D QAH effect indicates that the nonchiral side surface states of the thick magnetic TI trilayers are gapped and thus do not affect the QAH quantization. The 3D QAH insulators of hundred‐nanometer thickness provide a promising platform for the exploration of fundamental physics, including axion physics and image magnetic monopole, and the advancement of electronic and spintronic devices to circumvent Moore's law. 
    more » « less