skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advancing viral RNA structure prediction: measuring the thermodynamics of pyrimidine-rich internal loops
Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased toward small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with >6 nucleotides (nt) that occur frequently in viral RNA. This article presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Uracil and protonated cytosine base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with >6 nt are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2 × 2 have been measured. These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites.  more » « less
Award ID(s):
1726397
PAR ID:
10104185
Author(s) / Creator(s):
Date Published:
Journal Name:
RNA
Volume:
23
Issue:
5
ISSN:
1355-8382
Page Range / eLocation ID:
770-781
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nearly two decades after Westhof and Michel first proposed that RNA tetraloops may interact with distal helices, tetraloop–receptor interactions have been recognized as ubiquitous elements of RNA tertiary structure. The unique architecture of GNRA tetraloops ( N =any nucleotide, R =purine) enables interaction with a variety of receptors, e.g., helical minor grooves and asymmetric internal loops. The most common example of the latter is the GAAA tetraloop–11 nt tetraloop receptor motif. Biophysical characterization of this motif provided evidence for the modularity of RNA structure, with applications spanning improved crystallization methods to RNA tectonics. In this review, we identify and compare types of GNRA tetraloop–receptor interactions. Then we explore the abundance of structural, kinetic, and thermodynamic information on the frequently occurring and most widely studied GAAA tetraloop–11 nt receptor motif. Studies of this interaction have revealed powerful paradigms for structural assembly of RNA, as well as providing new insights into the roles of cations, transition states and protein chaperones in RNA folding pathways. However, further research will clearly be necessary to characterize other tetraloop–receptor and long-range tertiary binding interactions in detail – an important milestone in the quantitative prediction of free energy landscapes for RNA folding. 
    more » « less
  2. ABSTRACT Reactive small-molecule probes are widely used for RNA structure probing, however current approaches largely measure average RNA transcript dynamics and do not resolve structural differences that occur during folding or transcript maturation. Here, we present SNIPER-seq, an RNA structure probing method relying upon metabolic labeling with 2’-aminodeoxycytidine, structure-dependent 2’-amino reaction with an aromatic isothiocyanate, and high-throughput RNA sequencing. Our method maps cellular RNA structure transcriptome-wide with temporal resolution enabling determination of transcript age-dependent RNA structural dynamics. We benchmark our approach against known RNA structures and investigate the dynamics of human 5S rRNA during ribosome biogenesis, revealing specific structural changes in 5S rRNA loops that occur over the course of several hours. Taken together, our work sheds light on the maturation and coordinated conformational changes that take place during ribosome biogenesis and provides a general strategy for surveying evolving RNA structural dynamics across the transcriptome. 
    more » « less
  3. Abstract Many RNAs function through RNA–RNA interactions. Fast and reliable RNA structure prediction with consideration of RNA–RNA interaction is useful, however, existing tools are either too simplistic or too slow. To address this issue, we present LinearCoFold, which approximates the complete minimum free energy structure of two strands in linear time, and LinearCoPartition, which approximates the cofolding partition function and base pairing probabilities in linear time. LinearCoFold and LinearCoPartition are orders of magnitude faster than RNAcofold. For example, on a sequence pair with combined length of 26,190 nt, LinearCoFold is 86.8× faster than RNAcofold MFE mode, and LinearCoPartition is 642.3× faster than RNAcofold partition function mode. Surprisingly, LinearCoFold and LinearCoPartition’s predictions have higher PPV and sensitivity of intermolecular base pairs. Furthermore, we apply LinearCoFold to predict the RNA–RNA interaction between SARS-CoV-2 genomic RNA (gRNA) and human U4 small nuclear RNA (snRNA), which has been experimentally studied, and observe that LinearCoFold’s prediction correlates better with the wet lab results than RNAcofold’s. 
    more » « less
  4. Using a graph representation of RNA structures, we have studied the ensembles of secondary and tertiary graphs of two sets of RNA with Monte Carlo simulations. The first consisted of 91 target ribozyme and riboswitch sequences of moderate lengths (<150 nt) having a variety of secondary, H-type pseudoknots and kissing loop interactions. The second set consisted of 71 more diverse sequences across many RNA families. Using a simple empirical energy model for tertiary interactions and only sequence information for each target as input, the simulations examined how tertiary interactions impact the statistical mechanics of the fold ensembles. The results show that the graphs proliferate enormously when tertiary interactions are possible, producing an entropic driving force for the ensemble to access folds having tertiary structures even though they are overall energetically unfavorable in the energy model. For each of the targets in the two test sets, we assessed the quality of the model and the simulations by examining how well the simulated structures were able to predict the native fold, and compared the results to fold predictions from ViennaRNA. Our model generated good or excellent predictions in a large majority of the targets. Overall, this method was able to produce predictions of comparable quality to Vienna, but it outperformed Vienna for structures with H-type pseudoknots. The results suggest that while tertiary interactions are predicated on real-space contacts, their impacts on the folded structure of RNA can be captured by graph space information for sequences of moderate lengths, using a simple tertiary energy model for the loops, the base pairs, and base stacks. 
    more » « less
  5. Abstract Understanding the molecular evolution of the SARS‐CoV‐2 virus as it continues to spread in communities around the globe is important for mitigation and future pandemic preparedness. Three‐dimensional structures of SARS‐CoV‐2 proteins and those of other coronavirusess archived in the Protein Data Bank were used to analyze viral proteome evolution during the first 6 months of the COVID‐19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48 000 viral isolates revealed how each one of 29 viral proteins have undergone amino acid changes. Catalytic residues in active sites and binding residues in protein–protein interfaces showed modest, but significant, numbers of substitutions, highlighting the mutational robustness of the viral proteome. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi‐Gaussian distribution. Detailed results are presented for potential drug discovery targets and the four structural proteins that comprise the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and protein–protein and protein–nucleic acid interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure‐based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance. 
    more » « less