Downlink channel estimation in massive MIMO systems is well known to generate a large overhead in frequency division duplex (FDD) mode as the amount of training generally scales with the number of transmit antennas. Using instead an extrapolation of the channel from the measured uplink estimates to the downlink frequency band completely removes this overhead. In this paper, we investigate the theoretical limits of channel extrapolation in frequency. We highlight the advantage of basing the extrapolation on high-resolution channel estimation. A lower bound (LB) on the mean squared error (MSE) of the extrapolated channel is derived. A simplified LB is also proposed, giving physical intuition on the SNR gain and extrapolation range that can be expected in practice. The validity of the simplified LB relies on the assumption that the paths are well separated. The SNR gain then linearly improves with the number of receive antennas while the extrapolation performance penalty quadratically scales with the ratio of the frequency and the training bandwidth. The theoretical LB is numerically evaluated using a 3GPP channel model and we show that the LB can be reached by practical high-resolution parameter extraction algorithms. Our results show that there are strong limitations on the extrapolation range than can be expected in SISO systems while much more promising results can be obtained in the multiple-antenna setting as the paths can be more easily separated in the delay-angle domain.
more »
« less
Training for Chanel Estimation in Nonlinear Multi-Antenna Transceivers
Recent efforts to obtain high data rates in wireless systems have focused on what can be achieved in systems that have nonlinear or coarsely quantized transceiver architectures. Estimating the channel in such a system is challenging because the nonlinearities distort the channel estimation process. It is therefore of interest to determine how much training is needed to estimate the channel sufficiently well so that the channel estimate can be used during data communication. We provide a way to determine how much training is needed by deriving a lower bound on the achievable rate in a training-based scheme that can be computed and analyzed even when the number of antennas is very large. This lower bound can be tight, especially at high SNR. One conclusion is that the optimal number of training symbols may paradoxically be smaller than the number of transmitters for systems with coarselyquantized transceivers. We show how the training time can be strongly dependent on the number of receivers, and give an example where doubling the number of receivers reduces the training time by about 37 percent.
more »
« less
- Award ID(s):
- 1731056
- PAR ID:
- 10104226
- Date Published:
- Journal Name:
- Information Theory and Applications
- Page Range / eLocation ID:
- 1-11
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
One-bit transceivers with strongly nonlinear characteristics are being considered for wireless communication because of their low cost and low power consumption. Although each such transceiver can support only a low data rate, multiple such transceivers can be used to obtain an aggregate high data rate. An important part of many communication systems is the process of channel estimation, which is particularly challenging when the estimation process uses these transceivers. The standard analysis of estimation mean-square error versus training length that is available for linear transceivers does not apply with the nonlinearities inherent in one-bit transceivers. We analyze the training requirements in a large- scale system and show that the optimal number of training symbols strongly depends on the number of receivers, and the optimal number of training symbols can be significantly smaller than the number of transmitters. These results contrast sharply with classical results obtained with linear transceivers.more » « less
-
Throughput extremization is an important facet of performance modeling for low-power wide-area network (LP-WAN) wireless networks (e.g., LoRaWAN) as it provides insight into the best and worst case behavior of the network. Our previous work on throughput extremization established lower and upper bounds on throughput for random access channel assignment over a collision erasure channel in which the lower bound is expressed in terms of the number of radios and sum load on each channel. In this paper the lower bound is further characterized by identifying two local minimizers (a load balanced assignment and an imbalanced assignment) where the decision variables are the number of radios assigned to each channel and the total load on each channel. A primary focus is to characterize how macro-parameters of the optimization, i.e., the total number of radios, their total load, and the minimum load per radio, determine the regions under which each of the local minimizers is in fact the global minimizer.more » « less
-
In this paper, we consider channel estimation problem in the uplink of filter bank multicarrier (FBMC) systems. We propose a pilot structure and a joint multiuser channel estimation method for FBMC. Opposed to the available solutions in the literature, our proposed technique does not rely on the flat-channel condition over each subcarrier band or any requirement for placing guard symbols between different users’ pilots. Our proposed pilot structure reduces the training overhead by interleaving the users’ pilots in time and frequency. Thus, we can accommodate a larger number of training signals within the same bandwidth and improve the spectral efficiency. Furthermore, this pilot structure inherently leads to a reduced peak-to-average power ratio (PAPR) compared with the solutions that use all the subcarriers for training. We analytically derive the Cramér-Rao lower bound (CRLB) and mean square error (MSE) expressions for our proposed method. We show that these expressions are the same. This confirms the optimality of our proposed method, which is numerically evaluated through simulations. Relying on its improved spectral efficiency, our proposed method can serve a large number of users and relax pilot contamination problem in FBMC-based massive MIMO systems. This is corroborated through simulations in terms of sum-rate performance for both single cell and multicell scenarios.more » « less
-
We explore a scheme that enables the training of a deep neural network in a Federated Learning configuration over an additive white Gaussian noise channel. The goal is to create a low complexity, linear compression strategy, called PolarAir, that reduces the size of the gradient at the user side to lower the number of channel uses needed to transmit it. The suggested approach belongs to the family of compressed sensing techniques, yet it constructs the sensing matrix and the recovery procedure using multiple access techniques. Simulations show that it can reduce the number of channel uses by ∼30% when compared to conveying the gradient without compression. The main advantage of the proposed scheme over other schemes in the literature is its low time complexity. We also investigate the behavior of gradient updates and the performance of PolarAir throughout the training process to obtain insight on how best to construct this compression scheme based on compressed sensing.more » « less
An official website of the United States government

