ABSTRACT A popular numerical method to model the dynamics of a ‘full spectrum’ of cosmic rays (CRs), also applicable to radiation/neutrino hydrodynamics, is to discretize the spectrum at each location/cell as a piecewise power law in ‘bins’ of momentum (or frequency) space. This gives rise to a pair of conserved quantities (e.g. CR number and energy) that are exchanged between cells or bins, which in turn give the update to the normalization and slope of the spectrum in each bin. While these methods can be evolved exactly in momentum-space (e.g. considering injection, absorption, continuous losses/gains), numerical challenges arise dealing with spatial fluxes, if the scattering rates depend on momentum. This has often been treated either by neglecting variation of those rates ‘within the bin,’ or sacrificing conservation – introducing significant errors. Here, we derive a rigorous treatment of these terms, and show that the variation within the bin can be accounted for accurately with a simple set of scalar correction coefficients that can be written entirely in terms of other, explicitly evolved ‘bin-integrated’ quantities. This eliminates the relevant errors without added computational cost, has no effect on the numerical stability of the method, and retains manifest conservation. We derive correction terms both for methods that explicitly integrate flux variables (e.g. two-moment or M1-like) methods, as well as single-moment (advection-diffusion, FLD-like) methods, and approximate corrections valid in various limits.
more »
« less
Modifier Ontologies for frequency, certainty, degree, and coverage phenotype modifier
Background: When phenotypic characters are described in the literature, they may be constrained or clarified with additional information such as the location or degree of expression, these terms are called “modifiers”. With effort underway to convert narrative character descriptions to computable data, ontologies for such modifiers are needed. Such ontologies can also be used to guide term usage in future publications. Spatial and method modifiers are the subjects of ontologies that already have been developed or are under development. In this work, frequency (e.g., rarely, usually), certainty (e.g., probably, definitely), degree (e.g., slightly, extremely), and coverage modifiers (e.g., sparsely, entirely) are collected, reviewed, and used to create two modifier ontologies with different design considerations. The basic goal is to express the sequential relationships within a type of modifiers, for example, usually is more frequent than rarely, in order to allow data annotated with ontology terms to be classified accordingly. Method: Two designs are proposed for the ontology, both using the list pattern: a closed ordered list (i.e., five-bin design) and an open ordered list design. The five-bin design puts the modifier terms into a set of 5 fixed bins with interval object properties, for example, one_level_more/less_frequently_than, where new terms can only be added as synonyms to existing classes. The open list approach starts with 5 bins, but supports the extensibility of the list via ordinal properties, for example, more/less_frequently_than, allowing new terms to be inserted as a new class anywhere in the list. The consequences of the different design decisions are discussed in the paper. CharaParser was used to extract modifiers from plant, ant, and other taxonomic descriptions. After a manual screening, 130 modifier words were selected as the candidate terms for the modifier ontologies. Four curators/experts (three biologists and one information scientist specialized in biosemantics) reviewed and categorized the terms into 20 bins using the Ontology Term Organizer (OTO) (http://biosemantics.arizona.edu/OTO). Inter-curator variations were reviewed and expressed in the final ontologies. Results: Frequency, certainty, degree, and coverage terms with complete agreement among all curators were used as class labels or exact synonyms. Terms with different interpretations were either excluded or included using “broader synonym” or “not recommended” annotation properties. These annotations explicitly allow for the user to be aware of the semantic ambiguity associated with the terms and whether they should be used with caution or avoided. Expert categorization results showed that 16 out of 20 bins contained terms with full agreements, suggesting differentiating the modifiers into 5 levels/bins balances the need to differentiate modifiers and the need for the ontology to reflect user consensus. Two ontologies, developed using the Protege ontology editor, are made available as OWL files and can be downloaded from https://github.com/biosemantics/ontologies. Contribution: We built the first two modifier ontologies following a consensus-based approach with terms commonly used in taxonomic literature. The five-bin ontology has been used in the Explorer of Taxon Concepts web toolkit to compute the similarity between characters extracted from literature to facilitate taxon concepts alignments. The two ontologies will also be used in an ontology-informed authoring tool for taxonomists to facilitate consistency in modifier term usage.
more »
« less
- Award ID(s):
- 1661485
- PAR ID:
- 10104346
- Date Published:
- Journal Name:
- Biodiversity Data Journal
- Volume:
- 6
- ISSN:
- 1314-2836
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Although the interactions among glass formers and modifiers, for example, connectivity and charge distribution, have been studied extensively in oxide glasses, the impact of a particular modifier species on the mechanical performance of aluminoborosilicate (ABS) glasses is not well understood. This work compares the indentation properties of six ABS glasses, each of which contains a different network modifier (NWM) with varying field strength (FS). Three alkali and three alkaline earth ABS glasses were designed with low NWM content and [NWM] ≈ [Al2O3], to test the modifier FS effect at low concentrations and to maximize three‐coordinated boron. It has been found that both hardness and crack resistance increase with increasing FS in these ABS systems, which is surprising in the context of historical reports. Using11B,27Al, and29Si solid‐state nuclear magnetic resonance, this work provides evidence of how charge distributions differ as a function of NWM species, and how this relates to the observed indentation behaviors.more » « less
-
Abstract The spectacular radiation of insects has produced a stunning diversity of phenotypes. During the past 250 years, research on insect systematics has generated hundreds of terms for naming and comparing them. In its current form, this terminological diversity is presented in natural language and lacks formalization, which prohibits computer-assisted comparison using semantic web technologies. Here we propose a Model for Describing Cuticular Anatomical Structures (MoDCAS) which incorporates structural properties and positional relationships for standardized, consistent, and reproducible descriptions of arthropod phenotypes. We applied the MoDCAS framework in creating the ontology for the Anatomy of the Insect Skeleto-Muscular system (AISM). The AISM is the first general insect ontology that aims to cover all taxa by providing generalized, fully logical, and queryable, definitions for each term. It was built using the Ontology Development Kit (ODK), which maximizes interoperability with Uberon (Uberon multi-species anatomy ontology) and other basic ontologies, enhancing the integration of insect anatomy into the broader biological sciences. A template system for adding new terms, extending, and linking the AISM to additional anatomical, phenotypic, genetic, and chemical ontologies is also introduced. The AISM is proposed as the backbone for taxon-specific insect ontologies and has potential applications spanning systematic biology and biodiversity informatics, allowing users to (1) use controlled vocabularies and create semi-automated computer-parsable insect morphological descriptions; (2) integrate insect morphology into broader fields of research, including ontology-informed phylogenetic methods, logical homology hypothesis testing, evo-devo studies, and genotype to phenotype mapping; and (3) automate the extraction of morphological data from the literature, enabling the generation of large-scale phenomic data, by facilitating the production and testing of informatic tools able to extract, link, annotate, and process morphological data. This descriptive model and its ontological applications will allow for clear and semantically interoperable integration of arthropod phenotypes in biodiversity studies.more » « less
-
Abstract Glass properties are governed by the interplay between network formers and network modifiers; for a given composition of network formers, the ratio of different cationic modifiers compensating the anionic species in the network has a profound effect, which is often nonlinear, called a mixed modifier effect (MME). We have investigated the MME of sodium (Na) and calcium (Ca) in an aluminosilicate (NCAS) glass series following the formula [Na2O]30−x[CaO]x[Al2O3]10[SiO2]60, wherex = 0, 7.5, 15, 22.5, and 30. A nonadditive trend was observed in hardness and indentation toughness, with aqueous corrosion resistance exhibiting a shift from incongruent to congruent corrosion, whereas the network structure determined by molecular dynamics simulations revealed no significant trend with composition. Additionally, the NCAS glass containing both [Na2O] and [CaO] within an intermediate range exhibited superior resistance to wear at high humidity, a clear MME phenomenon previously only observed in soda–lime silica.more » « less
-
The Evidence & Conclusion Ontology (ECO) is a community standard for summarizing evidence in scientific research in a controlled, structured way. Annotations at the world's most frequented biological databases (e.g. model organisms, UniProt, Gene Ontology) are supported using ECO terms. ECO describes evidence derived from experimental and computational methods, author statements curated from the literature, inferences drawn by curators, and other types of evidence. Here, we describe recent ECO developments and collaborations, most notably: (i) a new ECO website containing user documentation, up-to-date news, and visualization tools; (ii) improvements to the ontology structure; (iii) implementing logic via an ongoing collaboration with the Ontology for Biomedical Investigations (OBI); (iv) addition of numerous experimental evidence types; and (v) addition of new evidence classes describing computationally derived evidence. Due to its utility, popularity, and simplicity, ECO is now expanding into realms beyond the protein annotation community, for example the biodiversity and phenotype communities. As ECO continues to grow as a resource, we are seeking new users and new use cases, with the hope that ECO will continue to be a broadly used and easy-to-implement community standard for representing evidence in diverse biological applications. Feel free to visit two ECO-sponsored workshops at ICBO 2016 to learn more: 1. “An introduction to the Evidence and Conclusion Ontology and representing evidence in scientific research” and 2. “OBI-ECO Interactions & Evidence”.more » « less