We fabricated a van der Waals heterostructure of WS 2 –ReSe 2 and studied its charge-transfer properties. Monolayers of WS 2 and ReSe 2 were obtained by mechanical exfoliation and chemical vapor deposition, respectively. The heterostructure sample was fabricated by transferring the WS 2 monolayer on top of ReSe 2 by a dry transfer process. Photoluminescence quenching was observed in the heterostructure, indicating efficient interlayer charge transfer. Transient absorption measurements show that holes can efficiently transfer from WS 2 to ReSe 2 on an ultrafast timescale. Meanwhile, electron transfer from ReSe 2 to WS 2 was also observed. The charge-transfer properties show that monolayers of ReSe 2 and WS 2 form a type-II band alignment, instead of type-I as predicted by theory. The type-II alignment is further confirmed by the observation of extended photocarrier lifetimes in the heterostructure. These results provide useful information for developing van der Waals heterostructure involving ReSe 2 for novel electronic and optoelectronic applications and introduce ReSe 2 to the family of two-dimensional materials to construct van der Waals heterostructures.
more »
« less
Efficient hole transfer from monolayer WS 2 to ultrathin amorphous black phosphorus
The newly developed van der Waals materials allow fabrication of multilayer heterostructures. Early efforts have mostly focused on heterostructures formed by similar materials. More recently, however, attempts have been made to expand the types of materials, such as topological insulators and organic semiconductors. Here we introduce an amorphous semiconductor to the material library for constructing van der Waals heterostructures. Samples composed of 2 nm amorphous black phosphorus synthesized by pulsed laser deposition and monolayer WS 2 obtained by mechanical exfoliation were fabricated by dry transfer. Photoluminescence measurements revealed that photocarriers excited in WS 2 of the heterostructure transfer to amorphous black phosphorus, in the form of either energy or charge transfer, on a time scale shorter than the exciton lifetime in WS 2 . Transient absorption measurements further indicate that holes can efficiently transfer from WS 2 to amorphous black phosphorus. However, interlayer electron transfer in either direction was found to be absent. The lack of electron transfer from amorphous black phosphorus to WS 2 is attributed to the localized electronic states in the amorphous semiconductor. Furthermore, we show that a hexagonal BN bilayer can effectively change the hole transfer process.
more »
« less
- Award ID(s):
- 1505852
- PAR ID:
- 10104418
- Date Published:
- Journal Name:
- Nanoscale Horizons
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2055-6756
- Page Range / eLocation ID:
- 236 to 242
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this work, we explore how the optical properties of isotropic materials can be modulated by adjacent anisotropic materials, providing new insights into anisotropic light-matter interactions in van der Waals heterostructures. Using a WS2/ReS2heterostructure, we systematically investigated the excitation angle-dependent photoluminescence (PL), differential reflectance, time-resolved PL, and power-dependent PL anisotropy of WS2. Our findings reveal that the anisotropic optical response of WS2, influenced by the crystallographically low symmetry and unique dielectric environment of ReS2, significantly impacts both the optical and temporal behavior of WS2. We observed that the emission anisotropy increases with optical power density, highlighting that anisotropic localization of photo-generated carriers and subsequent charge transfer dynamics are key contributors to the polarization-sensitive optical response. These findings provide a framework for leveraging optical density-sensitive anisotropy mirroring to design advanced anisotropic optoelectronic and photonic devices.more » « less
-
Van der Waals heterojunctions of two-dimensional transition-metal dichalcogenides are intensely investigated for multiple optoelectronics applications. Strong and adjustable interactions between layers can influence the charge and energy flow that govern material performance. We report ab initio quantum molecular dynamics investigation of the influence of the bilayer twist angle on charge transfer and recombination in MoS 2 /WS 2 heterojunctions, including high-symmetry 0° and 60° configurations, and low symmetry 9.43° and 50.57° structures with Moiré patterns. The twist angle modulates interlayer coupling, as evidenced by changes in the interlayer distance, electron-vibrational interactions, and spectral shifts in the out-of-plane vibrational frequencies. Occurring on a femtosecond timescale, the hole transfer depends weakly on the twist angle and is ultrafast due to high density of acceptor states and large nonadiabatic coupling. In contrast, the electron–hole recombination takes nanoseconds and varies by an order of magnitude depending on the twist angle. The recombination is slow because it occurs across a large energy gap. It depends on the twist angle because the nonadiabatic coupling is sensitive to the interlayer distance and overlap of electron and hole wavefunctions. The Moiré pattern systems exhibit weaker interlayer interaction, generating longer-lived charges. Both charge separation and recombination are driven by out-of-plane vibrational motions. The simulations rationalize the experimental results on the influence of the bilayer twist angle on the charge separation and recombination. The atomistic insights provide theoretical guidance for design of high-performance optoelectronic devices based on 2D van der Waals heterostructures.more » « less
-
Abstract Tin monochalcogenides SnS and SnSe, belonging to a family of Van der Waals crystals isoelectronic to black phosphorus, are known as environmentally friendly materials promising for thermoelectric conversion applications. However, they exhibit other desired functionalities, such as intrinsic linear dichroism of the optical and electronic properties originating from strongly anisotropic orthorhombic crystal structures. This property makes them perfect candidates for polarization‐sensitive photodetectors working in near‐infrared spectral range. A comprehensive study of the SnS and SnSe crystals is presented, performed by means of optical spectroscopy and photoemission spectroscopy, supported by ab initio calculations. The studies reveal the high sensitivity of the optical response of both materials to the incident light polarization, which is interpreted in terms of the electronic band dispersion and orbital composition of the electronic bands, dictating the selection rules. From the photoemission investigation the ionization potential, electron affinity and work function are determined, which are parameters crucial for the design of devices based on semiconductor heterostructures.more » « less
-
Abstract Recent experiments observed significant energy transfer in type-II van der Waals (vdW) heterostructures, such as WS 2 /MoSe 2 , which is surprising due to their staggered band alignment and weak spectral overlap. In this work, we carry out first-principles calculations to shed light on energy and charge transfer in WS 2 /MoSe 2 heterostructure. Incorporating excitonic effect in nonadiabatic electronic dynamics, our first-principles calculations uncover a two-step process in competing energy and charge transfer, unravel their relative efficiencies and explore the means to control their competition. While both Dexter and Förster mechanisms can be responsible for energy transfer, they are shown to operate at different conditions. The excitonic effect is revealed to drive ultrafast energy and charge transfer in type-II WS 2 /MoSe 2 heterostructure. Our work provides a comprehensive picture of exciton dynamics in vdW heterostructures and paves the way for rational design of novel vdW heterostructures for optoelectronic and photovoltaic applications.more » « less
An official website of the United States government

