skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Prediction of N-linked Glycoform Profiles of Monoclonal Antibody with Extracellular Metabolites and Two-Step Intracellular Models
Monoclonal antibodies (mAbs) are commonly glycosylated and show varying levels of galactose attachment. A set of experiments in our work showed that the galactosylation level of mAbs was altered by the culture conditions of hybridoma cells. The uridine diphosphate galactose (UDP-Gal) is one of the substrates of galactosylation. Based on that, we proposed a two-step model to predict N-linked glycoform profiles by solely using extracellular metabolites from cell culture. At the first step, the flux level of UDP-Gal in each culture was estimated based on a computational flux balance analysis (FBA); its level was found to be linear with the galactosylation degree on mAbs. At the second step, the glycoform profiles especially for G0F (agalactosylated), G1F (monogalactosylated) and G2F (digalactosylated) were predicted by a kinetic model. The model outputs well matched with the experimental data. Our study demonstrated that the integrated mathematical approach combining FBA and kinetic model is a promising strategy to predict glycoform profiles for mAbs during cell culture processes.  more » « less
Award ID(s):
1706731
PAR ID:
10104924
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Processes
Volume:
7
Issue:
4
ISSN:
2227-9717
Page Range / eLocation ID:
227
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Glycosyltransferases (GTs) are a large family of enzymes that add sugars to a broad range of acceptor substrates, including polysaccharides, proteins, and lipids, by utilizing a wide variety of donor substrates in the form of activated sugars. Individual GTs have generally been considered to exhibit a high level of substrate specificity, but this has not been thoroughly investigated across the extremely large set of GTs. Here we investigate Xyloglucan Xylosyltransferase 1 (XXT1), a GT involved in synthesis of the plant cell wall polysaccharide, xyloglucan. Xyloglucan has a glucan backbone, with initial side chain substitutions exclusively composed of xylose from UDP-Xylose. While this conserved substitution pattern suggests a high substrate specificity for XXT1, our in vitro kinetic studies elucidate a more complex set of behavior. Kinetic studies demonstrate comparable kcat values for reactions with UDP-Xylose and UDP-Glucose, while reactions with UDP-Arabinose and UDP-Galactose are over 10-fold slower. Using kcat/Km as a measure of efficiency, UDP-Xylose is 8-fold more efficient as a substrate than the next best alternative, UDP-Glucose. To the best of our knowledge, we are the first to demonstrate that not all plant XXTs are highly substrate specific, and some do show significant promiscuity in their in vitro reactions. Kinetic parameters alone likely do not explain the high substrate selectivity in planta, suggesting there are additional control mechanisms operating during polysaccharide biosynthesis. Improved understanding of substrate specificity of the GTs will aid in protein engineering, development of diagnostic tools, and understanding of biological systems. 
    more » « less
  2. How genomic differences contribute to phenotypic differences is a major question in biology. The recently characterized genomes, isolation environments, and qualitative patterns of growth on 122 sources and conditions of 1,154 strains from 1,049 fungal species (nearly all known) in the yeast subphylum Saccharomycotina provide a powerful, yet complex, dataset for addressing this question. We used a random forest algorithm trained on these genomic, metabolic, and environmental data to predict growth on several carbon sources with high accuracy. Known structural genes involved in assimilation of these sources and presence/absence patterns of growth in other sources were important features contributing to prediction accuracy. By further examining growth on galactose, we found that it can be predicted with high accuracy from either genomic (92.2%) or growth data (82.6%) but not from isolation environment data (65.6%). Prediction accuracy was even higher (93.3%) when we combined genomic and growth data. After theGALactose utilization genes, the most important feature for predicting growth on galactose was growth on galactitol, raising the hypothesis that several species in two orders, Serinales and Pichiales (containing the emerging pathogenCandida aurisand the genusOgataea, respectively), have an alternative galactose utilization pathway because they lack theGALgenes. Growth and biochemical assays confirmed that several of these species utilize galactose through an alternative oxidoreductive D-galactose pathway, rather than the canonicalGALpathway. Machine learning approaches are powerful for investigating the evolution of the yeast genotype–phenotype map, and their application will uncover novel biology, even in well-studied traits. 
    more » « less
  3. The Neurospora crassa genome has a gene cluster for the synthesis of galactosaminogalactan (GAG). The gene cluster includes the following: (1) UDP-glucose-4-epimerase to convert UDP-glucose and UDP-N-acetylglucosamine to UDP-galactose and UDP-N-acetylgalactosamine (NCU05133), (2) GAG synthase for the synthesis of an acetylated GAG (NCU05132), (3) GAG deacetylase (/NCW-1/NCU05137), (4) GH135-1, a GAG hydrolase with specificity for N-acetylgalactosamine-containing GAG (NCU05135), and (5) GH114-1, a galactosaminidase with specificity for galactosamine-containing GAG (NCU05136). The deacetylase was previously shown to be a major cell wall glycoprotein and given the name of NCW-1 (non-GPI anchored cell wall protein-1). Characterization of the polysaccharides found in the growth medium from the wild type and the GAG synthase mutant demonstrates that there is a major reduction in the levels of polysaccharides containing galactosamine and N-acetylgalactosamine in the mutant growth medium, providing evidence that the synthase is responsible for the production of a GAG. The analysis also indicates that there are other galactose-containing polysaccharides produced by the fungus. Phenotypic characterization of wild-type and mutant isolates showed that deacetylated GAG from the wild type can function as an adhesin to a glass surface and provides the fungal mat with tensile strength, demonstrating that the deacetylated GAG functions as an intercellular adhesive. The acetylated GAG produced by the deacetylase mutant was found to function as an adhesive for chitin, alumina, celite (diatomaceous earth), activated charcoal, and wheat leaf particulates. 
    more » « less
  4. Cell migration is centrally involved in a myriad of physiological processes, including morphogenesis, wound healing, tissue repair, and metastatic growth. The bioenergetics that underlie migratory behavior are not fully understood, in part because of variations in cell culture media and utilization of experimental cell culture systems that do not model physiological connective extracellular fibrous networks. In this study, we evaluated the bioenergetics of C2C12 myoblast migration and force production on fibronectin-coated nanofiber scaffolds of controlled diameter and alignment, fabricated using a nonelectrospinning spinneret-based tunable engineered parameters (STEP) platform. The contribution of various metabolic pathways to cellular migration was determined using inhibitors of cellular respiration, ATP synthesis, glycolysis, or glucose uptake. Despite immediate effects on oxygen consumption, mitochondrial inhibition only modestly reduced cell migration velocity, whereas inhibitors of glycolysis and cellular glucose uptake led to striking decreases in migration. The migratory metabolic sensitivity was modifiable based on the substrates present in cell culture media. Cells cultured in galactose (instead of glucose) showed substantial migratory sensitivity to mitochondrial inhibition. We used nanonet force microscopy to determine the bioenergetic factors responsible for single-cell force production and observed that neither mitochondrial nor glycolytic inhibition altered single-cell force production. These data suggest that myoblast migration is heavily reliant on glycolysis in cells grown in conventional media. These studies have wide-ranging implications for the causes, consequences, and putative therapeutic treatments aimed at cellular migration. 
    more » « less
  5. Heavy metal contamination of drinking water is a public health concern that requires the development of more efficient bioremediation techniques. Absorption technologies, including biosorption, provide opportunities for improvements to increase the diversity of target metal ions and overall binding capacity. Microorganisms are a key component in wastewater treatment plants, and they naturally bind metal ions through surface macromolecules but with limited capacity. The long-term goal of this work is to engineer capsule polymerases to synthesize molecules with novel functionalities. In previously published work, we showed that the Neisseria meningitidis serogroup W (NmW) galactose–sialic acid (Gal–NeuNAc) heteropolysaccharide binds lead ions effectively, thereby demonstrating the potential for its use in environmental decontamination applications. In this study, computational analysis of the NmW capsule polymerase galactosyltransferase (GT) domain was used to gain insight into how the enzyme could be modified to enable the synthesis of N-acetylgalactosamine–sialic acid (GalNAc–NeuNAc) heteropolysaccharide. Various computational approaches, including molecular modeling with I-TASSER and molecular dynamics (MD) simulations with NAMD, were utilized to identify key amino acid residues in the substrate binding pocket of the GT domain that may be key to conferring UDP-GalNAc specificity. Through these combined strategies and using BshA, a UDP-GlcNAc transferase, as a structural template, several NmW active site residues were identified as mutational targets to accommodate the proposed N-acetyl group in UDP-GalNAc. Thus, a rational approach for potentially conferring new properties to bacterial capsular polysaccharides is demonstrated. 
    more » « less