skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chemoselective amide reductions by heteroleptic fluoroaryl boron Lewis acids
The heteroleptic borane catalyst (C 6 F 5 ) 2 B(CH 2 CH 2 CH 2 )BPin is found to hydrosilylatively reduce amides under mild conditions. Simple tertiary amides can be reduced using Me 2 EtSiH, whereas tertiary benzamides required a more reactive secondary silane, Et 2 SiH 2 , for efficient reduction. The catalytic system described exhibits exceptional chemoselectivity in the reduction of oligoamides and tolerates functionalities which are prone to reduction under similar conditions.  more » « less
Award ID(s):
1726291
PAR ID:
10104952
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
54
Issue:
46
ISSN:
1359-7345
Page Range / eLocation ID:
5855 to 5858
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The conditions of methane (CH 4 ) formation in olivine-hosted secondary fluid inclusions and their prevalence in peridotite and gabbroic rocks from a wide range of geological settings were assessed using confocal Raman spectroscopy, optical and scanning electron microscopy, electron microprobe analysis, and thermodynamic modeling. Detailed examination of 160 samples from ultraslow- to fast-spreading midocean ridges, subduction zones, and ophiolites revealed that hydrogen (H 2 ) and CH 4 formation linked to serpentinization within olivine-hosted secondary fluid inclusions is a widespread process. Fluid inclusion contents are dominated by serpentine, brucite, and magnetite, as well as CH 4( g ) and H 2( g ) in varying proportions, consistent with serpentinization under strongly reducing, closed-system conditions. Thermodynamic constraints indicate that aqueous fluids entering the upper mantle or lower oceanic crust are trapped in olivine as secondary fluid inclusions at temperatures higher than ∼400 °C. When temperatures decrease below ∼340 °C, serpentinization of olivine lining the walls of the fluid inclusions leads to a near-quantitative consumption of trapped liquid H 2 O. The generation of molecular H 2 through precipitation of Fe(III)-rich daughter minerals results in conditions that are conducive to the reduction of inorganic carbon and the formation of CH 4 . Once formed, CH 4( g ) and H 2( g ) can be stored over geological timescales until extracted by dissolution or fracturing of the olivine host. Fluid inclusions represent a widespread and significant source of abiotic CH 4 and H 2 in submarine and subaerial vent systems on Earth, and possibly elsewhere in the solar system. 
    more » « less
  2. Nitrogen and oxygen-donor ligands comprised of alkylimidazoles, tertiary amides, and diglycolamides were employed to form transition metal chelates in the preparation of twelve magnetic ionic liquids. Viscosities as low as 198 cP were achieved. 
    more » « less
  3. In the past several years, tremendous advances have been made in non-classical routes for amide bond formation that involve transamidation and amidation reactions of activated amides and esters. These new methods enable the formation of extremely valuable amide bonds via transition-metal- catalyzed, transition-metal-free or metal-free pathways by exploiting chemoselective acyl C–X (X = N, O) cleavage under mild conditions. In a broadest sense, these reactions overcome the formidable challenge of activating C–N/C–O bonds of amides or esters by rationally tackling nN→π*C=O delocalization in amides and nO→π*C=O donation in esters. In this account, we summarize the recent remarkable advances in the development of new methods for the synthesis of amides with a focus on (1) transition-metal/NHC- catalyzed C–N/C–O bond activation, (2) transition-metal-free highly selective cleavage of C–N/C–O bonds, (3) the development of new acyl-transfer reagents, and (4) other emerging methods. 
    more » « less
  4. Abstract Mackinawite has unique structural properties and reactivities when compared to other iron sulfides. Herein we provide evidence for the mackinawite‐supported reduction of KCN into various reduced compounds under primordial conditions. We proposed a reaction mechanism based on the nucleophilic attack by the deprotonated mackinawite ‐SH surface groups at the carbon atom of HCN. The initial binding of the substrate and the subsequent reduction events are supported by DFT calculations and further experiments using other substrates, such as KSCN, KOCN and CS2. Until now, conversion of CNinto CH4and NH3has been limited to nitrogenase cofactors or molecular Fe‐CN complexes. Our study provides evidence for mackinawite‐supported cleavage of the C−N bond under ambient conditions, which opens new avenues for investigation of other substrates for mackinawite‐supported reactions while shedding light on the relevance of this type of reaction to the origin of life on Earth. 
    more » « less
  5. Abstract BACKGROUNDKnoevenagel condensation is an important tool for building carbon–carbon (CC) bonds, especially when catalyzed by enzymes to enable a potentially high chemo‐, regio‐ and/or stereoselectivity. Although many Knoevenagel condensation reactions are carried out in aqueous solutions, insoluble hydrophobic substrates often lead to poor catalytic efficiencies. The use of water‐miscible organic solvents improves the substrate solubilization, but usually induces activity suppression or inactivation of enzymes. There is a great need to develop alternative solvents for both substrate dissolution and enzyme compatibility in CC bond formation reactions. RESULTSOur group previously developed dual‐functionalized water‐mimicking ionic liquids (ILs) for the activation and stabilization of hydrolases (e.g. lipase and protease). In the present study, we evaluated the Knoevenagel condensation of 4‐chlorobenzaldehyde with acetylacetone, and found that porcine pancreas lipase in water‐mimicking ILs carrying ammonium, imidazolium and benzimidazolium cations enabled higher reaction rates (up to 3.22 μmol min−1 g−1lipase) and better yields thantert‐butanol, glymes and [BMIM][Tf2N]. Interestingly, tertiary amide solvents such asN‐methyl‐2‐pyrrolidone (NMP),N,N‐dimethylformamide (DMF) andN,N‐dimethylacetamide (DMAc) led to 8.2‐ to 11.1‐fold increases in the initial rate (up to 35.66 μmol min−1 g−1lipase) when compared with dual‐functionalized ILs, which is likely due to some synergistic effect of these tertiary amides with the lipase. CONCLUSIONDual‐functionalized ILs based on ammonium, imidazolium and benzimidazolium cations improved Knoevenagel condensation reaction rates and yields when compared withtert‐butanol and glymes. Tertiary amides (NMP, DMF and DMAc) significantly increased the reaction rate. © 2024 The Authors.Journal of Chemical Technology and Biotechnologypublished by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI). 
    more » « less