We have prepared a new series of nickel phosphine phosphonate ester complexes that feature two metal-chelating polyethylene glycol (PEG) side arms. Metal binding and reactivity studies in polar solvents showed that they readily coordinate external cations, including alkali (Li + , Na + , K + ), alkaline (Mg 2+ , Ca 2+ ), transition (Sc 3+ , Co 2+ , Zn 2+ ), post-transition (Ga 3+ ), and lanthanide (La 3+ ) metals. Although olefin polymerization reactions are typically performed in non-polar solvents, which cannot solubilize +2 and +3 metal cations, we discovered that our nickel catalysts could promote ethylene polymerization in neat tetrahydrofuran. This advance allowed us, for the first time, to systematically investigate the effects of a wide range of M + , M 2+ , and M 3+ ions on the reactivity of nickel olefin polymerization catalysts. In ethylene homopolymerization, the addition of Co(OTf) 2 to our nickel-PEG complexes provided the largest boost in activity (up to 11-fold, 2.7 × 10 6 g mol −1 h −1 ) compared to that in the absence of external salts. The catalyst enhancing effects of secondary metals were also observed in studies of ethylene and polar olefin ( e.g. , propyl vinyl ether, allyl butyl ether, methyl-10-undecenoate, and 5-acetoxy-1-pentene) copolymerization. Notably, combining either Co 2+ or Zn 2+ with our nickel complexes increased the rates of polymerization in the presence of propyl vinyl ether by about 5.0- and 2.4-fold, respectively. Although further studies are needed to elucidate the structural and mechanistic roles of the secondary metals, this work is an important advance toward the development of cation-switchable polymerization catalysts.
more »
« less
Catalyst-controlled stereoselective cationic polymerization of vinyl ethers
The tacticity of vinyl polymers has a profound effect on their physical properties. Despite the well-developed stereoselective methods for the polymerization of propylene and other nonpolar α-olefins, stereoselective polymerization of polar vinyl monomers has proven more challenging. We have designed chiral counterions that systematically bias the reactivity and chain-end stereochemical environment during cationic polymerization. This approach overrides conventional chain-end stereochemical bias to achieve catalyst-controlled stereoselective polymerization. We demonstrate that this method is general to vinyl ether substrates, providing access to a range of isotactic poly(vinyl ether)s with high degrees of isotacticity. The obtained materials display the tensile properties of commercial polyolefins but adhere more strongly to polar substrates by an order of magnitude, indicating their promise for next-generation engineering applications.
more »
« less
- Award ID(s):
- 1726291
- PAR ID:
- 10104954
- Date Published:
- Journal Name:
- Science
- Volume:
- 363
- Issue:
- 6434
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 1439 to 1443
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In typical cyclic polymer synthesis via ring‐closure, chain growth and cyclization events are competing with each other, thus affording cyclic polymers with uncontrolled molecular weight or ring size and high dispersity. Here we uncover a mechanism by which Lewis pair polymerization (LPP) operates on polar vinyl monomers that allows the control of where and when cyclization takes place, thereby achieving spatial and temporal control to afford precision cyclic vinyl polymers or block copolymers with predictable molecular weight and low dispersity (≈1.03). A combined experimental and theoretical study demonstrates that cyclization occurs only after all monomers have been consumed (when) via conjugate addition of the propagating chain end to the specific site of the initiating chain end (where), allowing the cyclic polymer formation steps to be regulated and executed with precision in space and time.more » « less
-
Vinyl ethers are commonly used to deactivate Grubbs catalysts and terminate ring opening metathesis polymerization (ROMP) by forming Fischer carbene species with attenuated metathesis reactivity. However, we recently demonstrated that a cyclic enol ether, 2,3-dihydrofuran (DHF), can in fact be homopolymerized or copolymerized with norbornene derivatives. 1,5-Cyclooctadiene (COD) and cyclooctene (COE) consist of an important class of ROMP monomers, and we describe here a study of their copolymerization with DHF. Addition of DHF greatly suppressed the ROMP activity of COD and COE and resulted in significant alkene isomerization of COD. Chloranil was found to be an effective additive to prevent undesired isomerization and promote copolymerization. As a result, high molecular weight COD/COE and DHF copolymers were synthesized. Hydrolysis of the enol ether main chain linkages yields polyalkenamers with alcohol and aldehyde end groups. This study encourages further exploration of the in situ formed Ru Fischer carbene species in ROMP to access degradable polymers.more » « less
-
Abstract Formulations containing vinyl ethers and epoxy were successfully polymerized through a radical‐induced cationic frontal polymerization mechanism, using an iodonium salt superacid generator with a peroxide thermal radical initiator and fumed silica as a filler. It was found that an increase of vinyl ether content resulted in higher front velocities for divinyl ethers in formulations with trimethylolpropane triglycidyl ether. However, increased hydroxymonovinyl ether either decreased the front velocity or suppressed frontal polymerization. The kinetic effects of the superacid generator and thermal radical initiator with varying vinyl ether content were also studied. It was observed that increasing concentrations of initiators increased the front velocity, with the system exhibiting higher sensitivity to the superacid generator concentration.more » « less
-
null (Ed.)Plastic production continually increases its share of global oil consumption. Thermoplastic elastomers (TPEs) are a necessary component of many industries, from automotive and construction to healthcare and medical devices. To reduce the environmental burden of TPE production on the world, we developed two new ABA triblock copolymers synthesized through cationic reversable addition–fragmentation chain transfer (RAFT) polymerization from renewable monomers. Using poly(isobutyl vinyl ether) (PIBVE) as the soft block and either poly( p -methoxystyrene) (PMOS) or poly(2,3-dihydrofuran) (PDHF) as the hard blocks, we produced triblock copolymers with varying volume fractions and characterized their material properties. PDHF-PIBVE-PDHF is sourced almost entirely from simple alcohols and exhibits mechanical properties comparable to those of commercial TPEs. This effort demonstrates the utility of cationic RAFT for the production of sustainable TPEs.more » « less
An official website of the United States government

