skip to main content


Title: Interventions On-Call: Dynamic Adaptive Design in the 2015 National Survey of College Graduates
Abstract

This article illustrates some effects of dynamic adaptive design in a large government survey. We present findings from the 2015 National Survey of College Graduates Adaptive Design Experiment, including results and discussion of sample representativeness, response rates, and cost. We also consider the effect of truncating data collection (examining alternative stopping rules) on these metrics. In this experiment, we monitored sample representativeness continuously and altered data collection procedures—increasing or decreasing contact effort—to improve it. Cases that were overrepresented in the achieved sample were assigned to more passive modes of data collection (web or paper) or withheld from the group of cases that received survey reminders, whereas underrepresented cases were assigned to telephone follow-ups. The findings suggest that a dynamic adaptive survey design can improve a data quality indicator (R-indicators) without increasing cost or reducing response rate. We also find that a dynamic adaptive survey design has the potential to reduce the length of the data collection period, control cost, and increase timeliness of data delivery, if sample representativeness is prioritized over increasing the survey response rate.

 
more » « less
NSF-PAR ID:
10104973
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Survey Statistics and Methodology
ISSN:
2325-0984
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA. 
    more » « less
  2. The purpose of the project is to identify how to measure various types of institutional support as it pertains to underrepresented and underserved populations in colleges of engineering and science. We are grounding this investigation in the Model of Co-Curricular Support, a conceptual framework that emphasizes the breadth of assistance currently used to support undergraduate students in engineering and science. The results from our study will help prioritize the elements of institutional support that should appear somewhere in a college’s suite of support efforts to improve engineering and science learning environments and design effective programs, activities, and services. Our poster will present: 1) an overview of the instrument development process; 2) evaluation of the prototype for face and content validity from students and experts; and 3) instrument revision and data collection to determine test validity and reliability across varied institutional contexts. In evaluating the initial survey, we included multiple rounds of feedback from students and experts, receiving feedback from 46 participants (38 students, 8 administrators). We intentionally sampled for representation across engineering and science colleges; gender identity; race/ethnicity; international student status; and transfer student status. The instrument was deployed for the first time in Spring 2018 to the institutional project partners at three universities. It was completed by 722 students: 598 from University 1, 51 from University 2, and 123 from University 3. We tested the construct validity of these responses using a minimum residuals exploratory factor analysis and correlation. A preliminary data analysis shows evidence of differences in perception on types of support college of engineering and college of science students experience. The findings of this preliminary analysis were used to revise the instrument further prior to the next round of testing. Our target sample for the next instrument deployment is 2,000 students, so we will survey ~13,000 students based on a 15% anticipated response rate. Following data collection, we will use confirmatory factor analysis to continue establishing construct validity and report on the stability of constructs emerging from our piloting on a new student sample(s). We will also investigate differences across these constructs by subpopulations of students. 
    more » « less
  3. Abstract

    Adaptive survey designs are increasingly used by survey practitioners to counteract ongoing declines in household survey response rates and manage rising fieldwork costs. This paper reports findings from an evaluation of an early-bird incentive (EBI) experiment targeting high-effort respondents who participate in the 2019 wave of the US Panel Study of Income Dynamics. We identified a subgroup of high-effort respondents at risk of nonresponse based on their prior wave fieldwork effort and randomized them to a treatment offering an extra time-delimited monetary incentive for completing their interview within the first month of data collection (treatment group; N = 800) or the standard study incentive (control group; N = 400). In recent waves, we have found that the costs of the protracted fieldwork needed to complete interviews with high-effort cases in the form of interviewer contact attempts plus an increased incentive near the close of data collection are extremely high. By incentivizing early participation and reducing the number of interviewer contact attempts and fieldwork days to complete the interview, our goal was to manage both nonresponse and survey costs. We found that the EBI treatment increased response rates and reduced fieldwork effort and costs compared to a control group. We review several key findings and limitations, discuss their implications, and identify the next steps for future research.

     
    more » « less
  4. We conducted an experiment to evaluate the effects on fieldwork outcomes and interview mode of switching to a web-first mixed-mode data collection design (self-administered web interview and interviewer-administered telephone interview) from a telephone-only design. We examine whether the mixed-mode option leads to better survey outcomes, based on response rates, fieldwork outcomes, interview quality and costs. We also examine respondent characteristics associated with completing a web interview rather than a telephone interview. Our mode experiment study was conducted in the 2019 wave of the Transition into Adulthood Supplement (TAS) to the US Panel Study of Income Dynamics (PSID). TAS collects information biennially from approximately 3,000 young adults in PSID families. The shift to a mixed-mode design for TAS was aimed at reducing costs and increasing respondent cooperation. We found that for mixed-mode cases compared to telephone only cases, response rates were higher, interviews were completed faster and with lower effort, the quality of the interview data appeared better, and fieldwork costs were lower. A clear set of respondent characteristics reflecting demographic and socioeconomic characteristics, technology availability and use, time use, and psychological health were associated with completing a web interview rather than a telephone interview. 
    more » « less
  5. Background Internet data can be used to improve infectious disease models. However, the representativeness and individual-level validity of internet-derived measures are largely unexplored as this requires ground truth data for study. Objective This study sought to identify relationships between Web-based behaviors and/or conversation topics and health status using a ground truth, survey-based dataset. Methods This study leveraged a unique dataset of self-reported surveys, microbiological laboratory tests, and social media data from the same individuals toward understanding the validity of individual-level constructs pertaining to influenza-like illness in social media data. Logistic regression models were used to identify illness in Twitter posts using user posting behaviors and topic model features extracted from users’ tweets. Results Of 396 original study participants, only 81 met the inclusion criteria for this study. Of these participants’ tweets, we identified only two instances that were related to health and occurred within 2 weeks (before or after) of a survey indicating symptoms. It was not possible to predict when participants reported symptoms using features derived from topic models (area under the curve [AUC]=0.51; P=.38), though it was possible using behavior features, albeit with a very small effect size (AUC=0.53; P≤.001). Individual symptoms were also generally not predictable either. The study sample and a random sample from Twitter are predictably different on held-out data (AUC=0.67; P≤.001), meaning that the content posted by people who participated in this study was predictably different from that posted by random Twitter users. Individuals in the random sample and the GoViral sample used Twitter with similar frequencies (similar @ mentions, number of tweets, and number of retweets; AUC=0.50; P=.19). Conclusions To our knowledge, this is the first instance of an attempt to use a ground truth dataset to validate infectious disease observations in social media data. The lack of signal, the lack of predictability among behaviors or topics, and the demonstrated volunteer bias in the study population are important findings for the large and growing body of disease surveillance using internet-sourced data. 
    more » « less