skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Title: Massive MIMO Cognitive Cooperative Relaying
This paper proposes a novel cognitive cooperative transmission scheme by exploiting massive multiple-input multiple-output (MMIMO) and non-orthogonal multiple access (NOMA) radio technologies, which enables a macrocell network and multiple cognitive small cells to cooperate in dynamic spectrum sharing. The macrocell network is assumed to own the spectrum band and be the primary network (PN), and the small cells act as the secondary networks (SNs). The secondary access points (SAPs) of the small cells can cooperatively relay the traffic for the primary users (PUs) in the macrocell network, while concurrently accessing the PUs’ spectrum to transmit their own data opportunistically through MMIMO and NOMA. Such cooperation creates a “win-win” situation: the throughput of PUs will be significantly increased with the help of SAP relays, and the SAPs are able to use the PU’s spectrum to serve their secondary users (SUs). The interplay of these advanced radio techniques is analyzed in a systematic manner, and a framework is proposed for the joint optimization of cooperative relay selection, NOMA and MMIMO transmit power allocation, and transmission scheduling. Further, to model network-wide cooperation and competition, a two-sided matching algorithm is designed to find the stable partnership between multiple SAPs and PUs. The evaluation results demonstrate that the proposed scheme achieves significant performance gains for both primary and secondary users, compared to the baselines.  more » « less
Award ID(s):
1822087
NSF-PAR ID:
10105004
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Springer LNCS Wireless Algorithms, Systems, and Applications
Volume:
11604
Page Range / eLocation ID:
98-110
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Interference management in current TV white space and Citizens Broadband Radio Service networks is mainly based on geographical separation of primary and secondary users. This approach overprotects primary users at the cost of available spectrum for secondary users. Potential solutions include acquiring more primary user information, such as a measurement-enhanced geographical database, and cooperative primary user, such as the TV set feedback in the next generation TV systems. However, one challenge of these solutions is to effectively manage the aggregate interference at TV receivers from interweaving secondary users. In this paper, a stochastic geometry-based aggregate interference model is developed for unlicensed spectrum shared by heterogeneous secondary users that have various transmit powers and multi-antenna capabilities. Moreover, an efficient computation approach is presented to capture network dynamics in real-time via a down-sampling that preserves high-quantile precision of the model. The stochastic geometry-based model is verified experimentally in ISM band. It is shown that the model enables separate control of admission and transmit power of multiple co-located secondary networks to protect primary users and maximize spectrum utilization. 
    more » « less
  2. null (Ed.)
    In this letter, we investigate the idea of interference spreading and its effect on bit error rate (BER) performance in a cognitive radio network (CRN). The interference spreading phenomenon is caused because of the random allocation of subcarriers in an orthogonal frequency division multiplexing (OFDM)-based CRN without any spectrum-sensing mechanism. The CRN assumed in this work is of underlay configuration, where the frequency bands are accessed concurrently by both primary users (PUs) and secondary users (SUs). With random allocation, subcarrier collisions occur among the carriers of primary users (PUs) and secondary users (SUs), leading to interference among subcarriers. This interference caused by subcarrier collisions spreads out across multiple subcarriers of PUs rather than on an individual PU, therefore avoiding high BER for an individual PU. Theoretical and simulated signal to interference and noise ratio (SINR) for collision and no-collision cases are validated for M-quadrature amplitude modulation (M-QAM) techniques. Similarly, theoretical BER performance expressions are found and compared for M-QAM modulation orders under Rayleigh fading channel conditions. The BER for different modulation orders of M-QAM are compared and the relationship of average BER with interference temperature is also explored further. 
    more » « less
  3. Cognitive radio networks, a.k.a. dynamic spectrum access networks, offer a promising solution to the problems of spectrum scarcity and under-utilization. In this paper, we consider two single-user links: primary and secondary links. To increase secondary user (SU) transmission opportunities and increase primary user (PU) throughput, we consider a cognitive relay network where a SU relays PU packets that are unsuccessfully received at the primary receiver (PR). At the PR side, two protocols are suggested: i) energy accumulation (EA), and ii) mutual-information accumulation (MIA). The average stable throughput of the secondary link is derived under these protocols for a specific throughput selected by the primary link. Results show that EA and MIA can significantly improve the secondary throughput compared with the no accumulation scenario, especially under extreme environment. 
    more » « less
  4. null (Ed.)
    This paper assesses the feasibility of a novel dynamic spectrum sharing approach for a cellular downlink based on cognitive overlay to allow non-orthogonal cellular transmissions from a primary and a secondary radio access technology concurrently on the same radio resources. The 2-user Gaussian cognitive interference channel is used to model a downlink scenario in which the primary and secondary base stations are co-located. A system architecture is defined that addresses practical challenges associated with cognitive overlay, in particular the noncausal knowledge of the primary user message at the cognitive transmitter. A cognitive overlay scheme is applied that combines superposition coding with dirty paper coding, and a primary user protection criterion is derived that is specific to a scenario in which the primary system is 4G while the secondary system is 5G. Simulation is used to evaluate the achievable signal-to-interference-plus-noise ratio (SINR) at the 4G and 5G receivers, as well as the cognitive power allocation parameter as a function of distance. Results suggest that the cognitive overlay scheme is feasible when the distance to the 5G receiver is relatively small, even when a large majority of the secondary user transmit power is allocated to protecting the primary user transmission. Achievable link distances for the 5G receiver are on the order of hundreds of meters for an urban macrocell or a few kilometers for a rural macrocell. 
    more » « less
  5. Abstract—The mainstay of current spectrum access grants exclusive rights to proprietary occupants who exhibit tidal traffic patterns, leading to low usage of valuable spectrum resources. To remedy this situation, Dynamic Spectrum Access (DSA) is proposed to allow Secondary Users (SUs) to opportunistically exploit idle spectrum slices left by Primary Users (PUs). The key to the success of DSA lies in SUs’ knowledge on radio activities of PUs. To enhance the understanding of PU spectrum tenancy patterns, various mathematical models have been proposed to describe spectrum occupancy dynamics. However, there are still two overlooked aspects in existing studies on spectrum tenancy modeling, i.e., time-varying spectrum tenancy patterns and multi- ple channels within the same Radio Access Technology (RAT). To address the two issues, we apply a change detection algorithm to discover time points where spectrum tenancy patterns vary, and propose to characterize spectrum usage in a multi-channel RAT by the Vector Autoregressive (VAR) model. Through analyzing LTE spectrum tenancy data with the algorithm and the model, we validate that the segment size discovered by the online change detection method coincides with the one obtained by brute force, and VAR outperforms the widely adopted on/off model. 
    more » « less