skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wireless Adaptive Video Streaming with Edge Cloud
Wireless data traffic, especially video traffic, continues to increase at a rapid rate. Innovative network architectures and protocols are needed to improve the efficiency of data delivery and the quality of experience (QoE) of mobile users. Mobile edge computing (MEC) is a new paradigm that integrates computing capabilities at the edge of the wireless network. This paper presents a computation-capable and programmable wireless access network architecture to enable more efficient and robust video content delivery based on the MEC concept. It incorporates in-network data processing and communications under a unified software-defined networking platform. To address the multiple resource management challenges that arise in exploiting such integration, we propose a framework to optimize the QoE for multiple video streams, subject to wireless transmission capacity and in-network computation constraints. We then propose two simplified algorithms for resource allocation. The evaluation results demonstrate the benefits of the proposed algorithms for the optimization of video content delivery.  more » « less
Award ID(s):
1822087
PAR ID:
10105012
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley Hindawi
Date Published:
Journal Name:
Wireless Communications and Mobile Computing
Volume:
2018
ISSN:
1530-8669
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wireless edge networks are promising to provide better video streaming services to mobile users by provisioning computing and storage resources at the edge of wireless network. However, due to the diversity of user interests, user devices, video versions or resolutions, cache sizes, network conditions, etc., it is challenging to decide where to place the video contents, and which cache and video version a mobile user device should select. In this paper, we study the joint optimization of cache-version selection and content placement for adaptive video streaming in wireless edge networks. We propose practical distributed algorithms that operate at each user device and each network cache to maximize the overall network utility. In addition to proving the optimality of our algorithms, we implement our algorithms as well as several baseline algorithms on ndnSIM, an ns-3 based Named Data Networking simulator. Simulation evaluations demonstrate that our algorithms significantly outperform conventional heuristic solutions. 
    more » « less
  2. null (Ed.)
    Wireless charging coupled with computation offloading in edge networks offers a promising solution for realizing power-hungry and computation intensive applications on user devices. We consider a mutil-access edge computing (MEC) system with collocated MEC servers and base-stations/access points (BS/AP) supporting multiple users requesting data computation and wireless charging. We propose an integrated solution for wireless charging with computation offloading to satisfy the largest feasible proportion of requested wireless charging while keeping the total energy consumption at the minimum, subject to the MEC-AP transmit power and latency constraints. We propose a novel nested algorithm to jointly perform data partitioning, time allocation, transmit power control and design the optimal energy beamforming for wireless charging. Our resource allocation scheme offers a minimal energy consumption solution compared to other schemes while also delivering a higher amount of wirelessly transferred charge to the users. Even with data offloading, our proposed solution shows significant charging performance, comparable to the case of charging alone, hence showing the effectiveness of performing partial offloading jointly with wireless charging. 
    more » « less
  3. null (Ed.)
    Wireless charging coupled with computation offloading in edge networks offers a promising solution for realizing power-hungry and computation intensive applications on user-devices. We consider a multi-access edge computing (MEC) system with collocated MEC server and base-station/access point (AP), each equipped with a massive MIMO antenna array, supporting multiple users requesting data computation and wireless charging. The goal is to minimize the energy consumption for computation offloading and maximize the received energy at the user from wireless charging. The proposed solution is a novel two-stage algorithm employing nested descent algorithm, primal-dual subgradient and linear programming techniques to perform data partitioning and time allocation for computation offloading and design the optimal energy beamforming for wireless charging, all within MEC-AP transmit power and latency constraints. Algorithm results show that optimal energy beamforming significantly outperforms other schemes such as isotropic or directed charging without beam power allocation. Compared to binary offloading, data partition in partial offloading leads to lower energy consumption and more charging time, leading to better wireless charging performance. The charged energy over an extended period of multiple time-slots both with and without computation offloading can be substantial. Wireless charging from MEC-AP thus offers a viable untethered approach for supplying energy to user-devices. 
    more » « less
  4. With the evolution of 5G and Internet of Things technologies, Mobile Edge Computing (MEC) has emerged as a major computing paradigm. Compared to cloud computing, MEC integrates network control, computing, and storage to customizable, fast, reliable, and secure distributed services that are closer to the user and data site. Although a popular research topic, MEC resource management comes in many forms due to its emerging nature and there exists little consensus in the community. In this survey, we present a comprehensive review of existing research problems and relevant solutions within MEC resource management. We first describe the major problems in MEC resource allocation when the user applications have diverse performance requirements. We discuss the unique challenges caused by the dynamic nature of the environments and use cases where MEC is adopted. We also explore and categorize existing solutions that address such challenges. We particularly explore traditional optimization-based methods and deep learning-based approaches. In addition, we take a deeper dive into the most popular applications and use cases that adopt MEC paradigm and how MEC provides customized solutions for each use cases, in particular, video analytics applications. Finally, we outline the open research challenges and future directions. 1 
    more » « less
  5. Mobile edge computing (MEC) is an emerging paradigm that integrates computing resources in wireless access networks to process computational tasks in close proximity to mobile users with low latency. In this paper, we propose an online double deep Q networks (DDQN) based learning scheme for task assignment in dynamic MEC networks, which enables multiple distributed edge nodes and a cloud data center to jointly process user tasks to achieve optimal long-term quality of service (QoS). The proposed scheme captures a wide range of dynamic network parameters including non-stationary node computing capabilities, network delay statistics, and task arrivals. It learns the optimal task assignment policy with no assumption on the knowledge of the underlying dynamics. In addition, the proposed algorithm accounts for both performance and complexity, and addresses the state and action space explosion problem in conventional Q learning. The evaluation results show that the proposed DDQN-based task assignment scheme significantly improves the QoS performance, compared to the existing schemes that do not consider the effects of network dynamics on the expected long-term rewards, while scaling reasonably well as the network size increases. 
    more » « less