skip to main content


Title: HESS Opinions: How should a future water census address consumptive use? (And where can we substitute withdrawal data while we wait?)

Abstract. Despite the centrality of the water balance equation to hydrology and waterresources, in 2018 we still lack adequate empirical observations ofconsumptive use of water by humans and their economy. It is therefore worthconsidering what we can do with the withdrawal-based water use data wealready possess, and what future water census measurements would be requiredto more accurately quantify consumptive use for the most common mesoscale usecases. The limitations of the currently applied simple net consumptive use(SNCU) assumptions are discussed for several common use cases. Fortunately,several applied water management, economics, and policy questions can besufficiently addressed using currently available withdrawal numbers in placeof water consumption numbers. This discussion clarifies the broadrequirements for an improved “stock and flow” census-scale data model forconsumptive water use. While we are waiting for the eventual arrival of amore sophisticated water census, the withdrawal data we already possess aresufficient for some of our most important scientific and applied purposes.

 
more » « less
Award ID(s):
1639529
NSF-PAR ID:
10105102
Author(s) / Creator(s):
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
22
Issue:
10
ISSN:
1607-7938
Page Range / eLocation ID:
5551 to 5558
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The extensive interest in sustainable water management reflects the extent to which the global water landscape has changed in the past twenty years, which is a natural development of changes in water resources and an increase in the level of imbalance between water supply and demand. In this paper, a simulation model based on system dynamics (SD) methodology was developed to aid sustainable water management efforts in a semi-arid region. Six policy scenarios were used to study, analyze, and assess water management trends in the Southeast region of New Mexico, USA. The modeling process included two phases: calibration (2000–2015) and future prediction (2016–2050). Several statistical criteria were applied to assess the developed model performance. The findings revealed that the simulated outputs were in excellent agreement with the historical data, indicating accurate model simulation. The SD model’s determination coefficients ranged from 0.9288 to 0.9936 and the index of agreement values ranged from 0.9397 to 0.9958. Findings for the business-as-usual scenario indicated that total water withdrawals and total population will continue to rise, whereas groundwater storage, agricultural consumptive water use, and total consumptive water use will decrease over the simulated period. Sensitivity analysis using Monte Carlo simulation indicated that cultivated irrigated land change is the most influential parameter affecting groundwater storage, water supply storage change (total withdrawals), agricultural consumptive water use, and total consumptive water use. The changes occurring in the agricultural cultivated area had a great influence on controlling the groundwater system. Overall, the results showed that our SD model has been successful in capturing the system’s dynamic behavior, and confirmed its capability in modeling water management issues for policy and decision makers under semi-arid conditions. 
    more » « less
  2. This paper quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing the National Water Economy Database version 1.1 (NWED). NWED utilizes multiple mesoscale federal data resources from the United States Geological Survey (USGS), the United States Department of Agriculture (USDA), the U.S. Energy Information Administration (EIA), the U.S. Department of Transportation (USDOT), the U.S. Department of Energy (USDOE), and the U.S. Bureau of Labor Statistics (BLS) to quantify water use, economic trade, and commodity flows to construct this water footprint. Results corroborate previous studies in both the magnitude of the U.S. water footprint (F) and in the observed pattern of virtual water flows. The median water footprint (FCUMed) of the U.S. is 181 966 Mm3 (FWithdrawal: 400 844 Mm3; FCUMax: 222 144 Mm3; FCUMin: 61 117 Mm3) and the median per capita water footprint (F'CUMed) of the U.S. is 589 m3 capita−1 (F'Withdrawal: 1298 m3 capita−1; F'CUMax: 720 m3 capita−1; F'CUMin: 198 m3 capita−1). The U.S. hydro-economic network is centered on cities and is dominated by the local and regional scales. Approximately (58 %) of U.S. water consumption is for the direct and indirect use by cities. Further, the water footprint of agriculture and livestock is 93 % of the total U.S. water footprint, and is dominated by irrigated agriculture in the Western U.S. The water footprint of the industrial, domestic, and power economic sectors is centered on population centers, while the water footprint of the mining sector is highly dependent on the location of mineral resources. Owing to uncertainty in consumptive use coefficients alone, the mesoscale blue water footprint uncertainty ranges from 63 % to over 99 % depending on location. Harmonized region-specific, economic sector-specific consumption coefficients are necessary to reduce water footprint uncertainties and to better understand the human economy's water use impact on the hydrosphere. 
    more » « less
  3. Abstract Background and Objectives Substance use disorders (SUDs) are chronic relapsing diseases characterized by significant morbidity and mortality. Phenomenologically, patients with SUDs present with a repeating cycle of intoxication, withdrawal, and craving, significantly impacting their diagnosis and treatment. There is a need for better identification and monitoring of these disease states. Remote monitoring chronic illness with wearable devices offers a passive, unobtrusive, constant physiological data assessment. We evaluate the current evidence base for remote monitoring of nonalcohol, nonnicotine SUDs. Methods We performed a systematic, comprehensive literature review and screened 1942 papers. Results We found 15 studies that focused mainly on the intoxication stage of SUD. These studies used wearable sensors measuring several physiological parameters (ECG, HR, O 2 , Accelerometer, EDA, temperature) and implemented study‐specific algorithms to evaluate the data. Discussion and Conclusions Studies were extracted, organized, and analyzed based on the three SUD disease states. The sample sizes were relatively small, focused primarily on the intoxication stage, had low monitoring compliance, and required significant computational power preventing “real‐time” results. Cardiovascular data was the most consistently valuable data in the predictive algorithms. This review demonstrates that there is currently insufficient evidence to support remote monitoring of SUDs through wearable devices. Scientific Significance This is the first systematic review to show the available data on wearable remote monitoring of SUD symptoms in each stage of the disease cycle. This clinically relevant approach demonstrates what we know and do not know about the remote monitoring of SUDs within disease states. 
    more » « less
  4. Abstract Motivation

    Joint reconstruction of multiple gene regulatory networks (GRNs) using gene expression data from multiple tissues/conditions is very important for understanding common and tissue/condition-specific regulation. However, there are currently no computational models and methods available for directly constructing such multiple GRNs that not only share some common hub genes but also possess tissue/condition-specific regulatory edges.

    Results

    In this paper, we proposed a new graphic Gaussian model for joint reconstruction of multiple gene regulatory networks (JRmGRN), which highlighted hub genes, using gene expression data from several tissues/conditions. Under the framework of Gaussian graphical model, JRmGRN method constructs the GRNs through maximizing a penalized log likelihood function. We formulated it as a convex optimization problem, and then solved it with an alternating direction method of multipliers (ADMM) algorithm. The performance of JRmGRN was first evaluated with synthetic data and the results showed that JRmGRN outperformed several other methods for reconstruction of GRNs. We also applied our method to real Arabidopsis thaliana RNA-seq data from two light regime conditions in comparison with other methods, and both common hub genes and some conditions-specific hub genes were identified with higher accuracy and precision.

    Availability and implementation

    JRmGRN is available as a R program from: https://github.com/wenpingd.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Abstract

    We review results from field experiments that simulate drought, an ecologically impactful global change threat that is predicted to increase in magnitude, extent, duration and frequency. Our goal is to address, from primarily an ecosystem perspective, the questions ‘What have we learned from drought experiments?’ and ‘Where do we go from here?’.

    Drought experiments are among the most numerous climate change manipulations and have been deployed across a wide range of biomes, although most are conducted in short‐statured, water‐limited ecosystems. Collectively, these experiments have enabled ecologists to quantify the negative responses to drought that occur for most aspects of ecosystem structure and function. Multiple meta‐analyses of responses have also enabled comparisons of relative effect sizes of drought across hundreds of sites, particularly for carbon cycle metrics. Overall, drought experiments have provided strong evidence that ecosystem sensitivity to drought increases with aridity, but that plant traits associated with aridity are not necessarily predictive of drought resistance. There is also intriguing evidence that as drought magnitude or duration increases to extreme levels, plant strategies may shift from drought tolerance to drought escape/avoidance.

    We highlight three areas where more drought experiments are needed to advance our understanding. First, because drought is intensifying in multiple ways, experiments are needed that address alterations in drought magnitude versus duration, timing and/or frequency (individually and interactively). Second, drivers of drought may be shifting—from precipitation deficits to rising atmospheric demand for water—and disentangling how ecosystems respond to changes in hydrological ‘supply versus demand’ is critical for understanding drought impacts in the future. Finally, more attention should be focussed on post‐drought recovery periods since legacies of drought can affect ecosystem functioning much longer than the drought itself.

    We conclude with a call for a fundamental shift in the focus of drought experiments from those designed primarily as ‘response experiments’, quantifying the magnitude of change in ecosystem structure and function, to more ‘mechanistic experiments’—those that explicitly manipulate ecological processes or attributes thought to underpin drought responses.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less