skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pressure-regulated synthesis of Cu(TPA)·(DMF) in microdroplets for selective CO 2 adsorption
The synthesis of metal–organic frameworks (MOFs) by using traditional wet-chemistry methods generally requires very long durations and still suffers from non-uniform heat and mass transfer within the bulk precursor solutions. Towards addressing these issues, a microdroplet-based spray method has been developed. In a typical spray process, an MOF's precursor solution is first atomized into microdroplets. These droplets serve as microreactors to ensure homogeneous mixing, fast evaporation, and rapid nucleation and crystal growth to form MOF particles. However, the fundamental MOF formation mechanisms by using this strategy have not been fully understood. In this work, the role of the operating pressure in the synthesis of a representative MOF ( i.e. , Cu(TPA)·(DMF); TPA: terephthalic acid, DMF: dimethylformamide) was systematically investigated. Detailed characterization showed that the pressure variations significantly affected both the morphologies and crystalline structures of Cu(TPA)·(DMF). Numerical simulations revealed that the morphology changes are mainly attributed to the variations in supersaturation ratios, which are caused by different microdroplet evaporation rates due to the regulation of operating pressure, while the crystalline structure variations are closely related to the dissociation of DMF molecules at lower operating pressures. Besides, the dissociation of DMF molecules decreased the surface area of the MOF crystals, but gave rise to massive coordinatively unsaturated metal sites, which greatly enhanced the interaction of CO 2 with the MOF crystal and thus led to improved CO 2 adsorption capacity and selectivity. The outcome of this work would contribute to the fundamental understanding of MOF synthesis using the microdroplet-based spray method.  more » « less
Award ID(s):
1727553
PAR ID:
10105144
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Dalton Transactions
Volume:
48
Issue:
3
ISSN:
1477-9226
Page Range / eLocation ID:
1006 to 1016
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Semiconductors are the most widely used catalysts for CO 2 photoreduction. However, their efficiencies are limited by low charge carrier density and poor CO 2 activation. Towards solving these issues, a metal–organic framework (MOF)-based ternary nanocomposite was synthesized through self-assembly of TiO 2 /Cu 2 O heterojunctions via a microdroplet-based approach followed by in situ growth of Cu 3 (BTC) 2 (BTC = 1,3,5-benzenetricarboxylate). With increased charge carrier density and efficient CO 2 activation, the hybrid ternary nanocomposite exhibits a high CO 2 conversion efficiency and preferential formation of CH 4 . Systematic measurements by using gas chromatography, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, and time-resolved in situ diffuse reflectance infrared Fourier transform spectroscopy reveal that the semiconductor heterojunction and the coordinatively unsaturated copper sites within the hybrid nanostructure are attributable to the performance enhancements. 
    more » « less
  2. Abstract Converting CO2to value‐added chemicals,e. g., CH3OH, is highly desirable in terms of the carbon cycling while reducing CO2emission from fossil fuel combustion. Cu‐based nanocatalysts are among the most efficient for selective CO2‐to‐CH3OH transformation; this conversion, however, suffers from low reactivity especially in the thermodynamically favored low temperature range. We herein report ultrasmall copper (Cu) nanocatalysts supported on crystalline, mesoporous zinc oxide nanoplate (Cu@mZnO) with notable activity and selectivity of CO2‐to‐CH3OH in the low temperature range of 200–250 °C. Cu@mZnO nanoplates are prepared based on the crystal‐crystal transition of mixed Cu and Zn basic carbonates to mesoporous metal oxides and subsequent hydrogen reduction. Under the nanoconfinement of mesopores in crystalline ZnO frameworks, ultrasmall Cu nanoparticles with an average diameter of 2.5 nm are produced. Cu@mZnO catalysts have a peak CH3OH formation rate of 1.13 mol h−1per 1 kg under ambient pressure at 246 °C, about 25 °C lower as compared to that of the benchmark catalyst of Cu−Zn−Al oxides. Our new synthetic strategy sheds some valuable insights into the design of porous catalysts for the important conversion of CO2‐to‐CH3OH. 
    more » « less
  3. Abstract Large‐scale synthesis of van der Waals (vdW) metal–organic framework (MOF) nanosheets with controlled crystallinity and interlayer coupling strength is one of the bottlenecks in 2D materials that has limited its successful transition to large‐scale applications. Here, scalable synthesis of mBDC (m = Zn and Cu) 2D MOFs at large scales through a biphase method is demonstrated. The results show replacing water molecules with pyridine eliminates hydrogen bond formation at metal cluster sites. This prohibits tight coupling across adjacent MOF layers and sustains controllable 2D vdW MOF growth. It is further shown that control over the growth speed, crystallinity, and thickness can be achieved by addition of a controlled amount of triethylamine and formic acid to achieve highly crystalline vdW MOF nanosheets with extraordinarily high aspect ratio. The described synthesis route can easily be scaled up for large‐scale production either by deposition onto desired substrates or in crystalline layered powder form. Owing to its large lateral size, vdW nature, and high crystallinity, it is possible to perform atomic force microscopy, Kelvin probe force microscopy, and Raman measurements on the 2D MOFs. The results not only establish their vibrational properties and layer‐dependent responses but also show striking differences from other 2D inorganic materials. 
    more » « less
  4. Abstract Confining molecules in the nanoscale environment can lead to dramatic changes of their physical and chemical properties, which opens possibilities for new applications. There is a growing interest in liquefied gas electrolytes for electrochemical devices operating at low temperatures due to their low melting point. However, their high vapor pressure still poses potential safety concerns for practical usages. Herein, we report facile capillary condensation of gas electrolyte by strong confinement in sub-nanometer pores of metal-organic framework (MOF). By designing MOF-polymer membranes (MPMs) that present dense and continuous micropore (~0.8 nm) networks, we show significant uptake of hydrofluorocarbon molecules in MOF pores at pressure lower than the bulk counterpart. This unique property enables lithium/fluorinated graphite batteries with MPM-based electrolytes to deliver a significantly higher capacity than those with commercial separator membranes (~500 mAh g−1vs. <0.03 mAh g−1) at −40 °C under reduced pressure of the electrolyte. 
    more » « less
  5. Abstract Metal–organic frameworks (MOFs) are promising materials for electrocatalysis; however, lack of electrical conductivity in the majority of existing MOFs limits their effective utilization in the field. Herein, an excellent catalytic activity of a 2D copper (Cu)‐based conductive MOF, copper tetrahydroxyquinone (CuTHQ), is reported for aqueous CO2reduction reaction (CO2RR) at low overpotentials. It is revealed that CuTHQ nanoflakes (NFs) with an average lateral size of 140 nm exhibit a negligible overpotential of 16 mV for the activation of this reaction, a high current density of ≈173 mA cm−2at −0.45 V versus RHE, an average Faradaic efficiency (F.E.) of ≈91% toward CO production, and a remarkable turnover frequency as high as ≈20.82 s−1. In the low overpotential range, the obtained CO formation current density is more than 35 and 25 times higher compared to state‐of‐the‐art MOF and MOF‐derived catalysts, respectively. The operando Cu K‐edge X‐ray absorption near edge spectroscopy and density functional theory calculations reveal the existence of reduced Cu (Cu+) during CO2RR which reversibly returns to Cu2+after the reaction. The outstanding CO2catalytic functionality of conductive MOFs (c‐MOFs) can open a way toward high‐energy‐density electrochemical systems. 
    more » « less