A novel computational strategy is presented to calculate from first principles the coefficient of thermal expansion and the elastic constants of a material over meaningful intervals of temperature and pressure. This strategy combines a novel implementation of the quasiharmonic approximation to calculate the isothermal-isochoric linear and nonlinear elastic constants of a material, with elementary equations of nonlinear continuum mechanics. Our implementation of the quasiharmonic approximation relies on finite deformations, the use of nonprimitive supercells to describe a material, a recently proposed technique to calculate generalized mode Grüneisen parameters, and the numerical differentiation of the stress tensor to calculate both second- and third-order elastic constants. The combination of this method with nonlinear continuum mechanics is shown to yield accurate predictions of lattice parameters and linear elastic constants of a material over finite intervals of temperature and pressure, at the cost of calculating isothermal second- and third-order elastic constants for a single reference state. Here, the validity and limits of our novel methods are assessed by carrying out calculations of MgO based on classical interatomic potentials. To demonstrate potential, our methods are then used in conjunction with a density functional theory approach to calculate thermal expansion and elastic properties of silicon, lithium hydrate, and graphite.
more »
« less
Characterization of nonlinear electro-elastic behavior of piezoelectric receiver in ultrasound acoustic energy transfer systems
A scheme based on the approximate solution determined by the method of multiple scales is proposed for the identification of nonlinear material parameters of a piezoelectric disc. The theoretical approach is experimentally validated to determine these parameters through dynamic electrical actuation. The identified material parameters are then used to investigate the nonlinear electro-elastic behavior of the disk, used as a receiver, in an ultrasound acoustic energy transfer system.
more »
« less
- Award ID(s):
- 1711139
- PAR ID:
- 10105382
- Date Published:
- Journal Name:
- NODYCON 2019 Springer Proceedings
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A finite strain nonlinear viscoelastic constitutive model is used to study the uniaxial tension behaviour of chemical polyampholyte (PA) gel. This PA gel is cross-linked by chemical and physical bonds. Our constitutive model attempts to capture the time and strain dependent breaking and healing kinetics of physical bonds. We compare model prediction by uniaxial tension, cyclic and relaxation tests. Material parameters in our model are obtained by least squares optimization. These parameters gave fits that are in good agreement with the experiments.more » « less
-
Unlike traditional structural materials, soft solids can often sustain very large deformation before failure, and many exhibit nonlinear viscoelastic behavior. Modeling nonlinear viscoelasticity is a challenging problem for a number of reasons. In particular, a large number of material parameters are needed to capture material response and validation of models can be hindered by limited amounts of experimental data available. We have developed a Gaussian Process (GP) approach to determine the material parameters of a constitutive model describing the mechanical behavior of a soft, viscoelastic PVA hydrogel. A large number of stress histories generated by the constitutive model constitute the training sets. The low-rank representations of stress histories by Singular Value Decomposition (SVD) are taken to be random variables which can be modeled via Gaussian Processes with respect to the material parameters of the constitutive model. We obtain optimal material parameters by minimizing an objective function over the input set. We find that there are many good sets of parameters. Further the process reveals relationships between the model parameters. Results so far show that GP has great potential in fitting constitutive models.more » « less
-
In this paper, we investigate hyperelastic and viscoelastic model parameters using Global Sensitivity Analysis(GSA). These models are used to characterize the physical response of many soft-elastomers, which are used in a wide variety of smart material applications. Recent research has shown the effectiveness of using fractional-order calculus operators in modeling the viscoelastic response. The GSA is performed using parameter subset selection (PSS), which quantifies the relative parameter contributions to the linear and nonlinear, fractional-order viscoelastic models. Calibration has been performed to quantify the model parameter uncertainty; however, this analysis has led to questions regarding parameter sensitivity and whether or not the parameters can be uniquely identified given the available data. By performing GSA we can determine which parameters are most influential in the model, and fix non-influential parameters at a nominal value. The model calibration can then be performed to quantify the uncertainty of the influential parameters.more » « less
-
Abstract In its 60 years of existence, the field of nonlinear optics has gained momentum especially over the past two decades thanks to major breakthroughs in material science and technology. In this article, we present a new set of data tables listing nonlinear-optical properties for different material categories as reported in the literature since 2000. The papers included in the data tables are representative experimental works on bulk materials, solvents, 0D–1D–2D materials, metamaterials, fiber waveguiding materials, on-chip waveguiding materials, hybrid waveguiding systems, and materials suitable for nonlinear optics at THz frequencies. In addition to the data tables, we also provide best practices for performing and reporting nonlinear-optical experiments. These best practices underpin the selection process that was used for including papers in the tables. While the tables indeed show strong advancements in the field over the past two decades, we encourage the nonlinear-optics community to implement the identified best practices in future works. This will allow a more adequate comparison, interpretation and use of the published parameters, and as such further stimulate the overall progress in nonlinear-optical science and applications.more » « less
An official website of the United States government

