skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Implementation of Immersive Classroom Simulation Activities in a Mathematics Methods Course and a Life and Environmental Science Course
This study investigated the influence of immersive classroom simulation activities on the development of elementary pre-service teachers in two separate mathematics and science education courses that simultaneously focus on pedagogy and content. Participants submitted written personal reflections about their teaching experiences using the immersive classroom simulation activities. These reflections were analyzed for common emergent themes within and across courses. The participants discussed the benefits of the immersive classroom simulation activities in their written personal reflections. They viewed the experience as helpful in developing their skills as a practicing teacher in mathematics and science. Specifically, participants identified three sub-themes including: (a) the immersive classroom simulation activities as being beneficial by providing more authentic real-life teaching experiences than those experienced during peer-group teaching activities; (b) the importance of holding complete and appropriate understandings of content when teaching mathematics and science; and (c) the role of deep content knowledge in the process of developing high quality questions for students. This study has shown immersive classroom simulation activities to be a viable alternative for teacher education programs to engage elementary pre- service teachers in developing skills regarding classroom mathematics and science discourse.  more » « less
Award ID(s):
1725707
PAR ID:
10105492
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of interdisciplinary teacher leadership
Volume:
2
Issue:
1
ISSN:
2474-7432
Page Range / eLocation ID:
3-18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gibson, D. C.; Ochoa, M. N.; Christensen, R.; Cohen, J.; Crawford, D.; Graziano, K.; Langran, E.; Langub, L.; Rutledge, D.; Voogt, J. (Ed.)
    As computer science education standards are disseminated to K-12 school districts nationally, teacher education programs are left with the challenge of ensuring pre-service teachers are prepared to enter their first classroom with the skills and knowledge necessary to align instruction with the new standards. This paper examines the use of a learning intervention called “Block-Based Coding and Computational Thinking for Conceptual Mathematics” (B2C3Math) that aimed to help pre-service teachers majoring in early childhood and elementary education learn and apply computational thinking concepts to their elementary mathematics teaching. Ten pre-service teachers all at the same stage in their teacher preparation program participated in this convergent mixed-methods study. A focus of the research was placed on how participant’s computational thinking knowledge changed following the implementation of B2C3Math. Findings suggest that there were changes in the participants’ views of computational thinking application to elementary mathematics teaching following the implementation of B2C3Math. Implications for research and instructional practices using B2C3Math for teacher education are discussed. 
    more » « less
  2. L. Langran & D. Henriksen (Ed.)
    Preservice elementary teachers generally have little background in physics or physics education. Five weeks of content using technology (motion sensors and data loggers) was integrated across seven courses taught by three different instructors. Data were gathered from preservice teachers (n = 193) using the Mathematics Teaching Efficacy Beliefs Instrument at a large public Hispanic Serving Institution in the southwest United States. Results showed statistically significant improvements in the Personal Mathematics Teaching Efficacy subscale, but not in the Mathematics Teaching Outcome Expectancy subscale. 
    more » « less
  3. Abstract. We investigated teacher learning within a professional development (PD) workshop series on computational thinking (CT) for elementary-level mentor teachers. The purpose of the PD was to prepare mentor teachers to support preservice teachers in integrating CT into their classroom practice, toward the broader goal of advancing CT for all in the early grades. We examined the ways in which participants collaboratively built on existing professional knowledge as they engaged in professional learning activities designed to introduce CT and related pedagogies for elementary science education. Our data sources were field notes, artifacts, drawings, written reflections, and focus group interviews. We describe how participants developed new understandings of CT integration and made connections to existing professional knowledge of their students, their curriculum, and their school contexts. We discuss implications for teacher learning and PD design relevant to CT, and make recommendations for future research. 
    more » « less
  4. Couch, Brian (Ed.)
    There is a national need to recruit more science teachers. Enhancing pathways to teaching for science, technology, engineering, and mathematics (STEM) majors could help to address this need. The Learn By Doing Lab is a course in which STEM undergraduates teach hands-on life science and physical science to local third- through eighth-grade schoolchildren visiting the campus. To measure the impacts of this teaching experience on the undergraduate participants, we administered a version of the Science Teaching Efficacy Belief Instrument-Preservice survey at the start and end of the course. Significant gains were observed in the students’ belief in their personal ability to effectively teach science (self-efficacy). Furthermore, qualitative and quantitative analysis of student reflections revealed that they perceived the Learn By Doing Lab experience to have helped them develop 21st-century competencies, particularly in the areas of collaboration, communication, and adaptability. Finally, the students’ overall awareness and positive perception of science teaching careers increased. This indicates that providing a low-barrier course-based teaching experience for STEM undergraduates is a promising strategy to help recruit pre-service teachers, and a step toward alleviating the national STEM teacher shortage. 
    more » « less
  5. null (Ed.)
    Teacher education is facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards and state standards of learning. To help teachers meet these standards in their future classrooms, education courses for preservice teachers [PSTs] must provide opportunities to increase science and engineering knowledge, and the associated pedagogies. To address this need, Ed+gineering, an NSF-funded multidisciplinary service-learning project, was implemented to study ways in which PSTs are prepared to meet this challenge. This study provides the models and supporting data for four unique methods of infusion of engineering skills and practices into an elementary science methods course. The four models differ in mode of course delivery, integration of a group project (with or without partnering undergraduate engineering students), and final product (e.g., no product, video, interactive presentation, live lesson delivery). In three of the models, teams of 4-6 undergraduates collaborated to design and deliver (when applicable) lessons for elementary students. This multiple semester, mixed-methods research study, explored the ways in which four unique instructional models, with varied levels of engineering instruction enhancement, influenced PSTs’ science knowledge and pedagogical understanding. Both quantitative (e.g., science content knowledge assessment) and qualitative (e.g., student written reflections) data were used to assess science knowledge gains and pedagogical understanding. Findings suggest that the PSTs learned science content and were often able to explain particular science/ engineering concepts following the interventions. PSTs in more enhanced levels of intervention also shared ways in which their lessons reflected their students’ cultures through culturally responsive pedagogical strategies and how important engineering integration is to the elementary classroom, particularly through hands-on, inquiry-based instruction. 
    more » « less