skip to main content


Title: Exploring Induced Pedagogical Strategies Through a Markov Decision Process Framework: Lessons Learned
An important goal in the design and development of Intelligent Tutoring Systems (ITSs) is to have a system that adaptively reacts to students’ behavior in the short term and effectively improves their learning performance in the long term. Inducing effective pedagogical strategies that accomplish this goal is an essential challenge. To address this challenge, we explore three aspects of a Markov Decision Process (MDP) framework through four experiments. The three aspects are: 1) reward function, detecting the impact of immediate and delayed reward on effectiveness of the policies; 2) state representation, exploring ECR-based, correlation-based, and ensemble feature selection approaches for representing the MDP state space; and 3) policy execution, investigating the effectiveness of stochastic and deterministic policy executions on learning. The most important result of this work is that there exists an aptitude-treatment interaction (ATI) effect in our experiments: the policies have significantly different impacts on the particular types of students as opposed to the entire population. We refer the students who are sensitive to the policies as the Responsive group. All our following results are based on the Responsive group. First, we find that an immediate reward can facilitate a more effective induced policy than a delayed reward. Second, The MDP policies induced based on low correlation-based and ensemble feature selection approaches are more effective than a Random yet reasonable policy. Third, no significant improvement was found using stochastic policy execution due to a ceiling effect.  more » « less
Award ID(s):
1726550
NSF-PAR ID:
10105557
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of educational data mining
Volume:
10
Issue:
3
ISSN:
2157-2100
Page Range / eLocation ID:
27-68
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    An important goal in the design and development of Intelligent Tutoring Systems (ITSs) is to have a system that adaptively reacts to students’ behavior in the short term and effectively improves their learning performance in the long term. Inducing effective pedagogical strategies that accomplish this goal is an essential challenge. To address this challenge, we explore three aspects of a Markov Decision Process (MDP) framework through four experiments. The three aspects are: 1) reward function, detecting the impact of immediate and delayed reward on effectiveness of the policies; 2) state representation, exploring ECR-based, correlation-based, and ensemble feature selection approaches for representing the MDP state space; and 3) policy execution, investigating the effectiveness of stochastic and deterministic policy executions on learning. The most important result of this work is that there exists an aptitude-treatment interaction (ATI) effect in our experiments: the policies have significantly different impacts on the particular types of students as opposed to the entire population. We refer the students who are sensitive to the policies as the Responsive group. All our following results are based on the Responsive group. First, we find that an immediate reward can facilitate a more effective induced policy than a delayed reward. Second, The MDP policies induced based on low correlation-based and ensemble feature selection approaches are more effective than a Random yet reasonable policy. Third, no significant improvement was found using stochastic policy execution due to a ceiling effect. 
    more » « less
  2. An important goal in the design and development of Intelligent Tutoring Systems (ITSs) is to have a system that adaptively reacts to students’ behavior in the short term and effectively improves their learning performance in the long term. Inducing effective pedagogical strategies that accomplish this goal is an essential challenge. To address this challenge, we explore three aspects of a Markov Decision Process (MDP) framework through four experiments. The three aspects are: 1) reward function, detecting the impact of immediate and delayed reward on effectiveness of the policies; 2) state representation, exploring ECR-based, correlation-based, and ensemble feature selection approaches for representing the MDP state space; and 3) policy execution, investigating the effectiveness of stochastic and deterministic policy executions on learning. The most important result of this work is that there exists an aptitude-treatment interaction (ATI) effect in our experiments: the policies have significantly different impacts on the particular types of students as opposed to the entire population. We refer the students who are sensitive to the policies as the Responsive group. All our following results are based on the Responsive group. First, we find that an immediate reward can facilitate a more effective induced policy than a delayed reward. Second, The MDP policies induced based on low correlation-based and ensemble feature selection approaches are more effective than a Random yet reasonable policy. Third, no significant improvement was found using stochastic policy execution due to a ceiling effect. 
    more » « less
  3. Learning optimal policies in real-world domains with delayed rewards is a major challenge in Reinforcement Learning. We address the credit assignment problem by proposing a Gaussian Process (GP)-based immediate reward approximation algorithm and evaluate its effectiveness in 4 contexts where rewards can be delayed for long trajectories. In one GridWorld game and 8 Atari games, where immediate rewards are available, our results showed that on 7 out 9 games, the proposed GP inferred reward policy performed at least as well as the immediate reward policy and significantly outperformed the corresponding delayed reward policy. In e-learning and healthcare applications, we combined GP-inferred immediate rewards with offline Deep Q-Network (DQN) policy induction and showed that the GP-inferred reward policies outperformed the policies induced using delayed rewards in both real-world contexts. 
    more » « less
  4. Constrained action-based decision-making is one of the most challenging decision-making problems. It refers to a scenario where an agent takes action in an environment not only to maximize the expected cumulative reward but where it is subject to certain actionbased constraints; for example, an upper limit on the total number of certain actions being carried out. In this work, we construct a general data-driven framework called Constrained Action-based Partially Observable Markov Decision Process (CAPOMDP) to induce effective pedagogical policies. Specifically, we induce two types of policies: CAPOMDP-LG using learning gain as reward with the goal of improving students’ learning performance, and CAPOMDP-Time using time as reward for reducing students’ time on task. The effectiveness ofCAPOMDP-LG is compared against a random yet reasonable policy and the effectiveness of CAPOMDP-Time is compared against both a Deep Reinforcement Learning induced policy and a random policy. Empirical results show that there is an Aptitude Treatment Interaction effect: students are split into High vs. Low based on their incoming competence; while no significant difference is found among the High incoming competence groups, for the Low groups, students following CAPOMDP-Time indeed spent significantly less time than those using the two baseline policies and students following CAPOMDP-LG significantly outperform their peers on both learning gain and learning efficiency. 
    more » « less
  5. ABSTRACT Introduction

    Remote military operations require rapid response times for effective relief and critical care. Yet, the military theater is under austere conditions, so communication links are unreliable and subject to physical and virtual attacks and degradation at unpredictable times. Immediate medical care at these austere locations requires semi-autonomous teleoperated systems, which enable the completion of medical procedures even under interrupted networks while isolating the medics from the dangers of the battlefield. However, to achieve autonomy for complex surgical and critical care procedures, robots require extensive programming or massive libraries of surgical skill demonstrations to learn effective policies using machine learning algorithms. Although such datasets are achievable for simple tasks, providing a large number of demonstrations for surgical maneuvers is not practical. This article presents a method for learning from demonstration, combining knowledge from demonstrations to eliminate reward shaping in reinforcement learning (RL). In addition to reducing the data required for training, the self-supervised nature of RL, in conjunction with expert knowledge-driven rewards, produces more generalizable policies tolerant to dynamic environment changes. A multimodal representation for interaction enables learning complex contact-rich surgical maneuvers. The effectiveness of the approach is shown using the cricothyroidotomy task, as it is a standard procedure seen in critical care to open the airway. In addition, we also provide a method for segmenting the teleoperator’s demonstration into subtasks and classifying the subtasks using sequence modeling.

    Materials and Methods

    A database of demonstrations for the cricothyroidotomy task was collected, comprising six fundamental maneuvers referred to as surgemes. The dataset was collected by teleoperating a collaborative robotic platform—SuperBaxter, with modified surgical grippers. Then, two learning models are developed for processing the dataset—one for automatic segmentation of the task demonstrations into a sequence of surgemes and the second for classifying each segment into labeled surgemes. Finally, a multimodal off-policy RL with rewards learned from demonstrations was developed to learn the surgeme execution from these demonstrations.

    Results

    The task segmentation model has an accuracy of 98.2%. The surgeme classification model using the proposed interaction features achieved a classification accuracy of 96.25% averaged across all surgemes compared to 87.08% without these features and 85.4% using a support vector machine classifier. Finally, the robot execution achieved a task success rate of 93.5% compared to baselines of behavioral cloning (78.3%) and a twin-delayed deep deterministic policy gradient with shaped rewards (82.6%).

    Conclusions

    Results indicate that the proposed interaction features for the segmentation and classification of surgical tasks improve classification accuracy. The proposed method for learning surgemes from demonstrations exceeds popular methods for skill learning. The effectiveness of the proposed approach demonstrates the potential for future remote telemedicine on battlefields.

     
    more » « less