skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SAR11 bacteria have a high affinity and multifunctional glycine betaine transporter
Marine bacterioplankton face stiff competition for limited nutrient resources. SAR11, a ubiquitous clade of very small and highly abundant Alphaproteobacteria, are known to devote much of their energy to synthesizing ATP-binding cassette periplasmic proteins that bind substrates. We hypothesized that their small size and relatively large periplasmic space might enable them to outcompete other bacterioplankton for nutrients. Using uptake experiments with 14C-glycine betaine, we discovered that two strains of SAR11, Candidatus Pelagibacter sp. HTCC7211 and Cand. P. ubique HTCC1062, have extraordinarily high affinity for glycine betaine (GBT), with half-saturation (Ks) values around 1 nM and specific affinity values between 8 and 14 L mg cell−1 h−1. Competitive inhibition studies indicated that the GBT transporters in these strains are multifunctional, transporting multiple substrates in addition to GBT. Both strains could use most of the transported compounds for metabolism and ATP production. Our findings indicate that Pelagibacter cells are primarily responsible for the high affinity and multifunctional GBT uptake systems observed in seawater. Maximization of whole-cell affinities may enable these organisms to compete effectively for nutrients during periods when the gross transport capacity of the heterotrophic plankton community exceeds the supply, depressing ambient concentrations.  more » « less
Award ID(s):
1838445
PAR ID:
10105742
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Environmental microbiology
Volume:
21
Issue:
7
ISSN:
1462-2912
Page Range / eLocation ID:
2559-2575
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Oxygen deficient zones (ODZs) are subsurface marine systems that harbour distinct microbial communities, including populations of the picocyanobacteriaProchlorococcusthat can form a secondary chlorophyll maximum (SCM), and low‐oxygen tolerant strains of the globally abundant heterotrophPelagibacter(SAR11). Yet, the small labile molecules (metabolites) responsible for maintaining these ODZ communities are unknown. Here, we compared the metabolome of an ODZ to that of an oxygenated site by quantifying 87 metabolites across depth profiles in the eastern tropical North Pacific ODZ and the oxygenated waters of the North Pacific Gyre. Metabolomes were largely consistent between anoxic and oxic water columns. However, the osmolyte glycine betaine (GBT) was enriched in the oxycline and SCM of the ETNP, comprising as much as 1.2% of particulate organic carbon. Transcriptomes revealed two active GBT production pathways, glycine methylation (SDMT/bsmB) expressed byProchlorococcusand choline oxidation (betB) expressed by Gammaproteobacteria. GBT consumption through demethylation involved diverse microbial taxa, with SAR11 contributing nearly half of the transcripts for the initial step of GBT demethylation (BHMT), which is predicted to convert GBT and homocysteine into dimethylglycine and methionine, a compound SAR11 cannot otherwise produce. Thus, GBT connects the metabolisms of the dominant phototroph and heterotroph in the oceans. 
    more » « less
  2. Dubilier, Nicole (Ed.)
    ABSTRACT In the ocean surface layer and cell culture, the polyamine transport protein PotD of SAR11 bacteria is often one of the most abundant proteins detected. Polyamines are organic cations at seawater pH produced by all living organisms and are thought to be an important component of dissolved organic matter (DOM) produced in planktonic ecosystems. We hypothesized that SAR11 cells uptake and metabolize multiple polyamines and use them as sources of carbon and nitrogen. Metabolic footprinting and fingerprinting were used to measure the uptake of five polyamine compounds (putrescine, cadaverine, agmatine, norspermidine, and spermidine) in two SAR11 strains that represent the majority of SAR11 cells in the surface ocean environment, “ Candidatus Pelagibacter” strain HTCC7211 and “ Candidatus Pelagibacter ubique” strain HTCC1062. Both strains took up all five polyamines and concentrated them to micromolar or millimolar intracellular concentrations. Both strains could use most of the polyamines to meet their nitrogen requirements, but polyamines did not fully substitute for their requirements of glycine (or related compounds) or pyruvate (or related compounds). Our data suggest that potABCD transports all five polyamines and that spermidine synthase, speE, is reversible, catalyzing the breakdown of spermidine and norspermidine, in addition to its usual biosynthetic role. These findings provide support for the hypothesis that enzyme multifunctionality enables streamlined cells in planktonic ecosystems to increase the range of DOM compounds they metabolize. IMPORTANCE Genome streamlining in SAR11 bacterioplankton has resulted in a small repertoire of genes, yet paradoxically, they consume a substantial fraction of primary production in the oceans. Enzyme multifunctionality, referring to enzymes that are adapted to have broader substrate and catalytic range than canonically defined, is hypothesized to be an adaptation that increases the range of organic compounds metabolized by cells in environments where selection favors genome minimization. We provide experimental support for this hypothesis by demonstrating that SAR11 cells take up and metabolize multiple polyamine compounds and propose that a small set of multifunctional enzymes catalyze this metabolism. We report that polyamine uptake rates can exceed metabolic rates, resulting in both high intracellular concentrations of these nitrogen-rich compounds (in comparison to native polyamine levels) and an increase in cell size. 
    more » « less
  3. Abstract The flux of carbon through the labile dissolved organic matter (DOM) pool supports marine microbial communities and represents the fate of approximately half of marine net primary production (NPP). However, the behavior of individual chemical structures that make up labile DOM remain largely unknown. We performed 12 uptake kinetics and two uptake competition experiments on the abundant betaine osmolytes glycine betaine (GBT) and homarine. Combining uptake kinetics with dissolved metabolite measurements, we quantified fluxes through the DOM pool. Fluxes were correlated with particulate concentrations and ranged from 0.53 to 41 and 0.003 to 0.54 nmol L−1 d−1for GBT and homarine, respectively, equivalent to up to 1.2% of NPP. Turnover times of dissolved GBT and homarine ranged from 1 to 57 d. Betaines and sulfoniums such as dimethylsulfoniopropionate competitively inhibited homarine uptake. Our results quantify GBT and homarine cycling and suggest an important role for uptake competition in regulating dissolved metabolite concentrations and fluxes. 
    more » « less
  4. Abstract Prochlorococcus and SAR11 are among the smallest and most abundant organisms on Earth. With a combined global population of about 2.7 × 1028 cells, they numerically dominate bacterioplankton communities in oligotrophic ocean gyres and yet they have never been grown together in vitro. Here we describe co-cultures of Prochlorococcus and SAR11 isolates representing both high- and low-light adapted clades. We examined: (1) the influence of Prochlorococcus on the growth of SAR11 and vice-versa, (2) whether Prochlorococcus can meet specific nutrient requirements of SAR11, and (3) how co-culture dynamics vary when Prochlorococcus is grown with SAR11 compared with sympatric copiotrophic bacteria. SAR11 grew 15–70% faster in co-culture with Prochlorococcus, while the growth of the latter was unaffected. When Prochlorococcus populations entered stationary phase, this commensal relationship rapidly became amensal, as SAR11 abundances decreased dramatically. In parallel experiments with copiotrophic bacteria; however, the heterotrophic partner increased in abundance as Prochlorococcus densities leveled off. The presence of Prochlorococcus was able to meet SAR11’s central requirement for organic carbon, but not reduced sulfur. Prochlorococcus strain MIT9313, but not MED4, could meet the unique glycine requirement of SAR11, which could be due to the production and release of glycine betaine by MIT9313, as supported by comparative genomic evidence. Our findings also suggest, but do not confirm, that Prochlorococcus MIT9313 may compete with SAR11 for the uptake of 3-dimethylsulfoniopropionate (DMSP). To give our results an ecological context, we assessed the relative contribution of Prochlorococcus and SAR11 genome equivalents to those of identifiable bacteria and archaea in over 800 marine metagenomes. At many locations, more than half of the identifiable genome equivalents in the euphotic zone belonged to Prochlorococcus and SAR11 – highlighting the biogeochemical potential of these two groups. 
    more » « less
  5. Abstract The Order Pelagibacterales (SAR11) is the most abundant group of heterotrophic bacterioplankton in global oceans and comprises multiple subclades with unique spatiotemporal distributions. Subclade IIIa is the primary SAR11 group in brackish waters and shares a common ancestor with the dominant freshwater IIIb (LD12) subclade. Despite its dominance in brackish environments, subclade IIIa lacks systematic genomic or ecological studies. Here, we combine closed genomes from new IIIa isolates, new IIIa MAGS from San Francisco Bay (SFB), and 460 highly complete publicly available SAR11 genomes for the most comprehensive pangenomic study of subclade IIIa to date. Subclade IIIa represents a taxonomic family containing three genera (denoted as subgroups IIIa.1, IIIa.2, and IIIa.3) that had distinct ecological distributions related to salinity. The expansion of taxon selection within subclade IIIa also established previously noted metabolic differentiation in subclade IIIa compared to other SAR11 subclades such as glycine/serine prototrophy, mosaic glyoxylate shunt presence, and polyhydroxyalkanoate synthesis potential. Our analysis further shows metabolic flexibility among subgroups within IIIa. Additionally, we find that subclade IIIa.3 bridges the marine and freshwater clades based on its potential for compatible solute transport, iron utilization, and bicarbonate management potential. Pure culture experimentation validated differential salinity ranges in IIIa.1 and IIIa.3 and provided detailed IIIa cell size and volume data. This study is an important step forward for understanding the genomic, ecological, and physiological differentiation of subclade IIIa and the overall evolutionary history of SAR11. 
    more » « less