skip to main content

Title: Exploring the Effects of Additive Manufacturing Education on Students’ Engineering Design Process and its Outcomes
Research in additive manufacturing (AM) has increased the use of AM in many industries, resulting in a commensurate need for a workforce skilled in AM. In order to meet this need, educational institutions have undertaken different initiatives to integrate design for additive manufacturing (DfAM) into the engineering curriculum. However, limited research has explored the impact of these educational interventions in bringing about changes in the technical goodness of students’ design outcomes, particularly through the integration of DfAM concepts in an engineering classroom environment. This study explores this gap using an experimental study with 193 participants recruited from a junior-level course on mechanical engineering design. The participants were split into three educational intervention groups: (1) no DfAM, (2) restrictive DfAM, and (3) restrictive and opportunistic (dual) DfAM. The effects of the educational intervention on the participants’ use of DfAM were measured through changes in (1) participants’ DfAM self-efficacy, (2) technical goodness of their AM design outcomes, and (3) participants’ use of DfAM-related concepts when describing and evaluating their AM designs. The results showed that while all three educational interventions result in similar changes in the participants’ opportunistic DfAM self-efficacy, participants who receive only restrictive DfAM inputs show the greatest increase in more » their restrictive DfAM self-efficacy. Further, we see that despite these differences, all three groups show a similar decrease in the technical goodness of their AM designs, after attending the lectures. A content analysis of the participants’ design descriptions and evaluations revealed a simplification of their design geometries, which provides a possible explanation for the decrease in their technical goodness, despite the encouragement to utilize the design freedom of AM to improve functionality or optimize the weight of the structure. These results emphasize the need for more in-depth DfAM education to encourage the use of both opportunistic and restrictive DfAM during student design challenges. The results also highlight the possible influence of how the design problem is stated on the use of DfAM in solving it. « less
Authors:
; ; ;
Award ID(s):
1712234
Publication Date:
NSF-PAR ID:
10105902
Journal Name:
Journal of mechanical design
Page Range or eLocation-ID:
1-37
ISSN:
0161-8458
Sponsoring Org:
National Science Foundation
More Like this
  1. The integration of additive manufacturing (AM) processes in many industries has led to the need for AM education and training, particularly on design for AM (DfAM). To meet this growing need, several academic institutions have implemented educational interventions, especially project- and problem-based, for AM education; however, limited research has explored how the choice of the problem statement influences the design outcomes of a task-based AM/DfAM intervention. This research explores this gap in the literature through an experimental study with 222 undergraduate engineering students. Specifically, the study compared the effects of restrictive and dual (restrictive and opportunistic) DfAM education, when introduced through either a simple or complex design task. The effects of the intervention were measured through (1) changes in student DfAM self-efficacy, (2) student self-reported emphasis on DfAM, and (3) the creativity of student AM designs. The results show that the complexity of the design task has a significant effect on the participants’ self-efficacy with, and self-reported emphasis on, certain DfAM concepts. The results also show that the complex design task results in participants generating ideas with greater median uniqueness compared to the simple design task. These findings highlight the importance of the chosen problem statement on the outcomes ofmore »a DfAM educational intervention, and future work is also discussed.« less
  2. Abstract The integration of additive manufacturing (AM) processes in many industries has led to the need for AM education and training, particularly on design for AM (DfAM). To meet this growing need, several academic institutions have implemented educational interventions, especially project- and problem-based, for AM education; however, limited research has explored how the choice of the problem statement influences the design outcomes of a task-based AM/DfAM intervention. This research explores this gap in the literature through an experimental study with 175 undergraduate engineering students. Specifically, the study compared the effects of restrictive and dual (restrictive and opportunistic) DfAM education, when introduced through design tasks that differed in the explicit use of design objectives and functional and manufacturing constraints in defining them. The effects of the intervention were measured through (1) changes in participant DfAM self-efficacy, (2) participants' self-reported emphasis on DfAM, and (3) the creativity of participants' design outcomes. The results show that the choice of the design task has a significant effect on the participants' self-efficacy with, and their self-reported emphasis on, certain DfAM concepts. The results also show that the design task containing explicit constraints and objectives results in participants generating ideas with greater uniqueness compared with themore »design task with fewer explicit constraints and objectives. These findings highlight the importance of the chosen problem statement on the outcomes of a DfAM educational intervention, and future work is also discussed.« less
  3. Design for manufacturing provides engineers with a structure for accommodating the limitations of traditional manufacturing processes. However, little emphasis is typically given to the capabilities of processes that enable novel design geometries, which are often a point of focus when designing products to be made with additive manufacturing (AM) technologies. In addition, limited research has been conducted to understand how knowledge of both the capabilities (i.e., opportunistic) and limitations (i.e., restrictive aspects) of AM affects design outcomes. This study aims to address this gap by investigating the effect of no, restrictive, and both, opportunistic and restrictive (dual) design for additive manufacturing (DfAM) education on engineering students’ creative process. Based on the componential model of creativity [1], these effects were measured through changes in (1) motivation and interest in AM, (2) DfAM self-efficacy, and (3) the emphasis given to DfAM in the design process. These metrics were chosen as they represent the cognitive components of ‘task-motivation’ and ‘domain relevant skills’, which in turn influence the learning and usage of domain knowledge in creative production. The results of the study show that while the short (45 minute) DfAM intervention did not significantly change student motivation and interest towards AM, students showed highmore »levels of motivation and interest towards AM, before the intervention. Teaching students different aspects of DfAM also resulted in an increase in their self-efficacy in the respective topics. However, despite showing a greater increase in self-efficacy in their respective areas of training, the students did not show differences in the emphasis they gave to these DfAM concepts, in the design process. Further, students from all three education groups showed higher use of restrictive concepts, in comparison to opportunistic DfAM.« less
  4. Abstract

    Additive manufacturing (AM) processes present designers with unique capabilities while imposing several process limitations. Designers must leverage the capabilities of AM — through opportunistic design for AM (DfAM) — and accommodate AM limitations — through restrictive DfAM — to successfully employ AM in engineering design. These opportunistic and restrictive DfAM techniques starkly contrast the traditional, limitation-based design for manufacturing techniques — the current standard for design for manufacturing (DfM). Therefore, designers must transition from a restrictive DfM mindset towards a ‘dual’ design mindset — using opportunistic and restrictive DfAM concepts. Designers’ prior experience, especially with a partial set of DfM and DfAM techniques could inhibit their ability to transition towards a dual DfAM approach. On the other hand, experienced designers’ auxiliary skills (e.g., with computer-aided design) could help them successfully use DfAM in their solutions. Researchers have investigated the influence of prior experience on designers’ use of DfAM tools in design; however, a majority of this work focuses on early-stage ideation. Little research has studied the influence of prior experience on designers’ DfAM use in the later design stages, especially in formal DfAM educational interventions, and we aim to explore this research gap. From our results, we see thatmore »experienced designers report higher baseline self-efficacy with restrictive DfAM but not with opportunistic DfAM. We also see that experienced designers demonstrate a greater use of certain DfAM concepts (e.g., part and assembly complexity) in their designs. These findings suggest that introducing designers to opportunistic DfAM early could help develop a dual design mindset; however, having more engineering experience might be necessary for them to implement this knowledge into their designs.

    « less
  5. Abstract Additive manufacturing (AM) enables engineers to improve the functionality and performance of their designs by adding complexity at little to no additional cost. However, AM processes also exhibit certain unique limitations, such as the presence of support material. These limitations must be accounted for to ensure that designs can be manufactured feasibly and cost-effectively. Given these unique process characteristics, it is important for an AM-trained workforce to be able to incorporate both opportunistic and restrictive design for AM (DfAM) considerations into the design process. While AM/DfAM educational interventions have been discussed in the literature, few studies have objectively assessed the integration of DfAM in student engineering designers’ design outcomes. Furthermore, limited research has explored how the use of DfAM affects the students’ AM designs’ achievement of design task objectives. This research explores this gap in literature through an experimental study with 301 undergraduate students. Specifically, participants were exposed to either restrictive DfAM or dual DfAM (both opportunistic and restrictive) and then asked to participate in a design challenge. The participants’ final designs were evaluated for (1) build time and build material (2) the use of the various DfAM concepts, and (3) the features used to manifest these DfAM concepts.more »The results show that the use of certain DfAM considerations, such as part complexity, number of parts, support material mass, and build plate contact area (corresponding to warping tendency), correlated with the build material and build time of the AM designs—minimizing both of which were objectives of the design task. The results also show that introducing participants to opportunistic DfAM leads to the generation of designs with higher part complexity and lower build plate contact area but a greater presence of inaccessible support material.« less