skip to main content


Title: Exploring the Effects of Additive Manufacturing Education on Students’ Engineering Design Process and its Outcomes
Research in additive manufacturing (AM) has increased the use of AM in many industries, resulting in a commensurate need for a workforce skilled in AM. In order to meet this need, educational institutions have undertaken different initiatives to integrate design for additive manufacturing (DfAM) into the engineering curriculum. However, limited research has explored the impact of these educational interventions in bringing about changes in the technical goodness of students’ design outcomes, particularly through the integration of DfAM concepts in an engineering classroom environment. This study explores this gap using an experimental study with 193 participants recruited from a junior-level course on mechanical engineering design. The participants were split into three educational intervention groups: (1) no DfAM, (2) restrictive DfAM, and (3) restrictive and opportunistic (dual) DfAM. The effects of the educational intervention on the participants’ use of DfAM were measured through changes in (1) participants’ DfAM self-efficacy, (2) technical goodness of their AM design outcomes, and (3) participants’ use of DfAM-related concepts when describing and evaluating their AM designs. The results showed that while all three educational interventions result in similar changes in the participants’ opportunistic DfAM self-efficacy, participants who receive only restrictive DfAM inputs show the greatest increase in their restrictive DfAM self-efficacy. Further, we see that despite these differences, all three groups show a similar decrease in the technical goodness of their AM designs, after attending the lectures. A content analysis of the participants’ design descriptions and evaluations revealed a simplification of their design geometries, which provides a possible explanation for the decrease in their technical goodness, despite the encouragement to utilize the design freedom of AM to improve functionality or optimize the weight of the structure. These results emphasize the need for more in-depth DfAM education to encourage the use of both opportunistic and restrictive DfAM during student design challenges. The results also highlight the possible influence of how the design problem is stated on the use of DfAM in solving it.  more » « less
Award ID(s):
1712234
NSF-PAR ID:
10105902
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of mechanical design
ISSN:
0161-8458
Page Range / eLocation ID:
1-37
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The integration of additive manufacturing (AM) processes in many industries has led to the need for AM education and training, particularly on design for AM (DfAM). To meet this growing need, several academic institutions have implemented educational interventions, especially project- and problem-based, for AM education; however, limited research has explored how the choice of the problem statement influences the design outcomes of a task-based AM/DfAM intervention. This research explores this gap in the literature through an experimental study with 222 undergraduate engineering students. Specifically, the study compared the effects of restrictive and dual (restrictive and opportunistic) DfAM education, when introduced through either a simple or complex design task. The effects of the intervention were measured through (1) changes in student DfAM self-efficacy, (2) student self-reported emphasis on DfAM, and (3) the creativity of student AM designs. The results show that the complexity of the design task has a significant effect on the participants’ self-efficacy with, and self-reported emphasis on, certain DfAM concepts. The results also show that the complex design task results in participants generating ideas with greater median uniqueness compared to the simple design task. These findings highlight the importance of the chosen problem statement on the outcomes of a DfAM educational intervention, and future work is also discussed. 
    more » « less
  2. Abstract The integration of additive manufacturing (AM) processes in many industries has led to the need for AM education and training, particularly on design for AM (DfAM). To meet this growing need, several academic institutions have implemented educational interventions, especially project- and problem-based, for AM education; however, limited research has explored how the choice of the problem statement influences the design outcomes of a task-based AM/DfAM intervention. This research explores this gap in the literature through an experimental study with 175 undergraduate engineering students. Specifically, the study compared the effects of restrictive and dual (restrictive and opportunistic) DfAM education, when introduced through design tasks that differed in the explicit use of design objectives and functional and manufacturing constraints in defining them. The effects of the intervention were measured through (1) changes in participant DfAM self-efficacy, (2) participants' self-reported emphasis on DfAM, and (3) the creativity of participants' design outcomes. The results show that the choice of the design task has a significant effect on the participants' self-efficacy with, and their self-reported emphasis on, certain DfAM concepts. The results also show that the design task containing explicit constraints and objectives results in participants generating ideas with greater uniqueness compared with the design task with fewer explicit constraints and objectives. These findings highlight the importance of the chosen problem statement on the outcomes of a DfAM educational intervention, and future work is also discussed. 
    more » « less
  3. null (Ed.)
    Abstract

    Additive manufacturing (AM) processes present designers with unique capabilities while imposing several process limitations. Designers must leverage the capabilities of AM — through opportunistic design for AM (DfAM) — and accommodate AM limitations — through restrictive DfAM — to successfully employ AM in engineering design. These opportunistic and restrictive DfAM techniques starkly contrast the traditional, limitation-based design for manufacturing techniques — the current standard for design for manufacturing (DfM). Therefore, designers must transition from a restrictive DfM mindset towards a ‘dual’ design mindset — using opportunistic and restrictive DfAM concepts. Designers’ prior experience, especially with a partial set of DfM and DfAM techniques could inhibit their ability to transition towards a dual DfAM approach. On the other hand, experienced designers’ auxiliary skills (e.g., with computer-aided design) could help them successfully use DfAM in their solutions. Researchers have investigated the influence of prior experience on designers’ use of DfAM tools in design; however, a majority of this work focuses on early-stage ideation. Little research has studied the influence of prior experience on designers’ DfAM use in the later design stages, especially in formal DfAM educational interventions, and we aim to explore this research gap. From our results, we see that experienced designers report higher baseline self-efficacy with restrictive DfAM but not with opportunistic DfAM. We also see that experienced designers demonstrate a greater use of certain DfAM concepts (e.g., part and assembly complexity) in their designs. These findings suggest that introducing designers to opportunistic DfAM early could help develop a dual design mindset; however, having more engineering experience might be necessary for them to implement this knowledge into their designs.

     
    more » « less
  4. Additive Manufacturing (AM) is a novel process that enables the manufacturing of complex geometries through layer-by-layer deposition of material. AM processes provide a stark contrast to traditional, subtractive manufacturing processes, which has resulted in the emergence of design for additive manufacturing (DfAM) to capitalize on AM’s capabilities. In order to support the increasing use of AM in engineering, it is important to shift from the traditional design for manufacturing and assembly mindset, towards integrating DfAM. To facilitate this, DfAM must be included in the engineering design curriculum in a manner that has the highest impact. While previous research has systematically organized DfAM concepts into process capability-based (opportunistic) and limitation-based (restrictive) considerations, limited research has been conducted on the impact of teaching DfAM on the student’s design process. This study investigates this interaction by comparing two DfAM educational interventions conducted at different points in the academic semester. The two versions are compared by evaluating the students’ perceived utility, change in self-efficacy, and the use of DfAM concepts in design. The results show that introducing DfAM early in the semester when students have little previous experience in AM resulted in the largest gains in students perceiving utility in learning about DfAM concepts and DfAM self-efficacy gains. Further, we see that this increase relates to greater application of opportunistic DfAM concepts in student design ideas in a DfAM challenge. However, no difference was seen in the application of restrictive DfAM concepts between the two interventions. These results can be used to guide the design and implementation of DfAM education. 
    more » « less
  5. Additive manufacturing (AM) processes present designers with creative freedoms beyond the capabilities of traditional manufacturing processes. However, to successfully leverage AM, designers must balance their creativity against the limitations inherent in these processes to ensure the feasibility of their designs. This feasible adoption of AM can be achieved if designers learn about and apply opportunistic and restrictive design for AM (DfAM) techniques at appropriate stages of the design process. Researchers have demonstrated the effect of the order of presentation of information on the learning and retrieval of said information; however, there is a need to explore this effect within DfAM education. In this paper, we explore this gap through an experimental study involving 195 undergraduate engineering students. Specifically, we compare two variations in DfAM education: (1) opportunistic DfAM followed by restrictive DfAM, and (2) restrictive DfAM followed by opportunistic DfAM, against only opportunistic DFAM and only restrictive DfAM training. These variations are compared through (1) differences in participants’ DfAM self-efficacy, (2) their self-reported DfAM use, and (3) the creativity of their design outcomes. From the results, we see that only students trained in opportunistic DfAM, with or without restrictive DfAM, present a significant increase in their opportunistic DfAM self-efficacy. However, all students trained in DfAM – opportunistic, restrictive, or both – demonstrated an increase in their restrictive DfAM self-efficacy. Further, we see that teaching restrictive DfAM first followed by opportunistic DfAM results in the generation of ideas with greater creativity – a novel research finding. These results highlight the need for educators to accountfor the effects of the order of presenting content to students, especially when educating students about DfAM. 
    more » « less