skip to main content

Title: Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions
Proteins make up much of the machinery of cells and perform many roles that are essential for life. Some important proteins – known as intrinsically disordered proteins – lack any stable three-dimensional structure. One such protein, called tau, is best known for its ability to form tangles in the brain, and a buildup of these tangles is a hallmark of Alzheimer’s disease and many other dementias. Tau is also one of a number of proteins that can undergo a process called liquid-liquid phase separation: essentially, a solution of tau separates into a very dilute solution interspersed with droplets of a concentrated tau solution, similar to an oil-water mixture separating into a very watery solution with drops of oil. Understanding the conditions that lead to spontaneous liquid-liquid phase separation might give insight into how the tau tangles form. However, it was not known whether it is possible in principle for liquid-liquid phase separation of tau to occur in a living brain. Lin, McCarty et al. have now used an advanced computer simulation method together with experiments to map the conditions under which a solution containing tau undergoes liquid-liquid phase separation. Temperature as well as the concentrations of salt and the tau more » protein all influenced how easily tau droplets formed or dissolved, and the narrow range of conditions that encouraged droplet formation fell within the normal conditions found in the body, also known as “physiological conditions”. This suggested that tau droplets might form and dissolve easily in living systems, and possibly in the brain, depending on the precise physiological conditions. To explore this possibility further, tau protein was added to a dish containing living cells. As the map suggested, slightly adjusting temperature or protein concentrations caused tau droplets to form and dissolve, all while the cells remained alive. The map provided by this study may offer guides to researchers looking for liquid-liquid phase separation in the brain. If liquid-liquid phase separation of tau occurs in living brains, it may be important for determining whether and when damaging tau tangles emerge. For example, the high concentration of tau in droplets might speed up tangle formation. Ultimately, a better understanding of the conditions and mechanism for liquid-liquid phase separation of tau can help researchers understand the role of protein droplet formation in living systems. This may be a process that promotes, or possibly a regulatory mechanism that prevents, the formation of tau tangles associated with dementia. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1716956 1725797
Publication Date:
NSF-PAR ID:
10105971
Journal Name:
eLife
Volume:
8
ISSN:
2050-084X
Sponsoring Org:
National Science Foundation
More Like this
  1. Liquid-liquid phase separation (LLPS) is important to control a wide range of reactions from gene expression to protein degradation in a cell-sized space. To bring a better understanding of the compatibility of such phase-separated structures with protein synthesis, we study emergent LLPS in a cell-free transcription-translation (TXTL) reaction. When the TXTL reaction composed of many proteins is concentrated, the uniformly mixed state becomes unstable, and membrane-less phases form spontaneously. This LLPS droplet formation is induced when the TXTL reaction is enclosed in water-in-oil emulsion droplets, in which water evaporates from the surface. As the emulsion droplets shrink, smaller LLPS dropletsmore »appear inside the emulsion droplets and coalesce into large phase-separated domains that partition the localization of synthesized reporter proteins. The presence of PEG in the TXTL reaction is important not only for versatile cell-free protein synthesis but also for the formation of two large domains capable of protein partitioning. Our results may shed light on the dynamic interplay of LLPS formation and cell-free protein synthesis toward the construction of synthetic organelles.« less
  2. The inside of a cell is very organized. Just as bodies contain internal organs, cells contain many different compartments, called ‘organelles’, each with its own specific role. Most organelles are surrounded by a membrane that keeps their contents separate from the cytoplasm, the water-based liquid inside the rest of the cell. Some organelles, however, are not bounded by a membrane. Instead, they act like tiny drops of oil in water, retaining their structure because they have different physical properties from the fluid around them, a phenomenon called liquid-liquid phase separation. One such organelle is the nucleolus, which sits inside themore »cell’s nucleus (a membrane-bound organelle containing all the genetic material of the cell in the form of DNA). The nucleolus’s job is to produce ribosomes, the cellular machines that, once transported out of the nucleus, will make proteins. Human cells start with 10 small nucleoli in the nucleus, which fuse together until only one or two larger ones remain. Previous research showed that nucleoli form and persist thanks to liquid-liquid phase separation, and they behave like liquid droplets. Despite this, exactly how nucleoli interact with each other and with the fluid environment in the rest of the nucleus remained unknown. Caragine et al. set out to measure the behavior and interactions of nucleoli in living human cells. Microscopy experiments using human cells grown in the laboratory allowed the positions, size and shape of nucleoli to be tracked over time. This also yielded detailed information about the smoothness of their surface. Mathematical analysis revealed that pairs of nucleoli normally moved independently of each other, unless they were about to fuse, when they invariably slowed down and coordinated their movements. In addition, altering the state of DNA in the surrounding nucleus also affected the nucleoli. For example, when DNA was less densely packed, nucleoli shrank and their surfaces became smoother. These results build on our knowledge of how cells are organized by showing, for the first time, that the environment within the nucleus directly shapes the behavior of nucleoli. In the future, a better understanding of how cells maintain healthy nucleoli may help develop new treatments for human diseases such as cancer, which are characterized by problems with this organelle.« less
  3. Proteinaceous liquid-liquid phase separation (LLPS) occurs when a polypeptide coalesces into a dense phase to form a liquid droplet (i.e., condensate) in aqueous solution. In vivo, functional protein-based condensates are often referred to as membraneless organelles (MLOs), which have roles in cellular processes ranging from stress responses to regulation of gene expression. Late embryogenesis abundant (LEA) proteins containing seed maturation protein domains (SMP; PF04927) have been linked to storage tolerance of orthodox seeds. The mechanism by which anhydrobiotic longevity is improved is unknown. Interestingly, the brine shrimpArtemia franciscanais the only animal known to express such a protein (AfrLEA6) in itsmore »anhydrobiotic embryos. Ectopic expression ofAfrLEA6 (AWM11684) in insect cells improves their desiccation tolerance and a fraction of the protein is sequestered into MLOs, while aqueousAfrLEA6 raises the viscosity of the cytoplasm. LLPS ofAfrLEA6 is driven by the SMP domain, while the size of formed MLOs is regulated by a domain predicted to engage in protein binding.AfrLEA6 condensates formed in vitro selectively incorporate target proteins based on their surface charge, while cytoplasmic MLOs formed inAfrLEA6-transfected insect cells behave like stress granules. We suggest thatAfrLEA6 promotes desiccation tolerance by engaging in two distinct molecular mechanisms: by raising cytoplasmic viscosity at even modest levels of water loss to promote cell integrity during drying and by forming condensates that may act as protective compartments for desiccation-sensitive proteins. Identifying and understanding the molecular mechanisms that govern anhydrobiosis will lead to significant advancements in preserving biological samples.

    « less
  4. A ubiquitous structural feature in biological systems is texture in extracellular matrix that gains functions when hardened, for example, cell walls, insect scales, and diatom tests. Here, we develop patterned liquid crystal elastomer (LCE) particles by recapitulating the biophysical patterning mechanism that forms pollen grain surfaces. In pollen grains, a phase separation of extracellular material into a pattern of condensed and fluid-like phases induces undulations in the underlying elastic cell membrane to form patterns on the cell surface. In this work, LCE particles with variable surface patterns were created through a phase separation of liquid crystal oligomers (LCOs) droplet coupledmore »to homeotropic anchoring at the droplet interface, analogously to the pollen grain wall formation. Specifically, nematically ordered polydisperse LCOs and isotropic organic solvent (dichloromethane) phase-separate at the surface of oil-in-water droplets, while, different LCO chain lengths segregate to different surface curvatures simultaneously. This phase separation, which creates a distortion in the director field, is in competition with homeotropic anchoring induced by sodium dodecyl sulfate (SDS). By tuning the polymer chemistry of the system, we are able to influence this separation process and tune the types of surface patterns in these pollen-like microparticles. Our study reveals that the energetically favorable biological mechanism can be leveraged to offer simple yet versatile approaches to synthesize microparticles for mechanosensing, tissue engineering, drug delivery, energy storage, and displays.

    « less
  5. Shuttle protein UBQLN2 functions in protein quality control (PQC) by binding to proteasomal receptors and ubiquitinated substrates via its N-terminal ubiquitin-like (UBL) and C-terminal ubiquitin-associated (UBA) domains, respectively. Between these two folded domains are low complexity STI1-I and STI1-II regions, connected by disordered linkers. The STI1 regions bind other components, such as HSP70, that are important to the PQC functions of UBQLN2. We recently determined that the STI1-II region enables UBQLN2 to undergo liquid-liquid phase separation (LLPS) to form liquid droplets in vitro and biomolecular condensates in cells. However, how the interplay between the folded (UBL/UBA) domains and the intrinsically-disorderedmore »regions mediates phase separation is largely unknown. Using engineered domain deletion constructs, we found that removing the UBA domain inhibits UBQLN2 LLPS while removing the UBL domain enhances LLPS, suggesting that UBA and UBL domains contribute asymmetrically in modulating UBQLN2 LLPS. To explain these differential effects, we interrogated the interactions that involve the UBA and UBL domains across the entire UBQLN2 molecule using NMR spectroscopy. To our surprise, aside from well-studied canonical UBL:UBA interactions, there also exist moderate interactions between the UBL and several disordered regions, including STI1-I and residues 555-570, the latter of which is a known contributor to UBQLN2 LLPS. Our findings are essential for the understanding of both the molecular driving forces of UBQLN2 LLPS and the effects of ligand binding to UBL, UBA, or disordered regions on the phase behavior and physiological functions of UBQLN2.« less