skip to main content


Title: Structure, Thermodynamics, and Dynamics of Thin Brine Films in Oil-Brine-Rock Systems
Award ID(s):
1705287
NSF-PAR ID:
10106325
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Langmuir
ISSN:
0743-7463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Brine beneath Taylor Glacier has been proposed to enter the proglacial west lobe of Lake Bonney (WLB) as well as from Blood Falls, a surface discharge point at the Taylor Glacier terminus. The brine strongly influences the geochemistry of the water column of WLB. Year-round measurements from this study are the first to definitively identify brine intrusions from a subglacial entry point into WLB. Furthermore, we excluded input from Blood Falls by focusing on winter dynamics when the absence of an open water moat prevents surface brine entry. Due to the extremely high salinities below the chemocline in WLB, density stratification is dominated by salinity, and temperature can be used as a passive tracer. Cold brine intrusions enter WLB at the glacier face and intrude into the water column at the depth of neutral buoyancy, where they can be identified by anomalously cold temperatures at that depth. High-resolution measurements also reveal under-ice internal waves associated with katabatic wind events, a novel finding that challenges long-held assumptions about the stability of the WLB water column. 
    more » « less
  2. Shallow groundwater resources overlaying deep saline formations used in carbon storage applications are subjected to a potential contamination threat by CO2/brine leakage via natural or anthropogenically-induced conductive pathways in the confining caprock. Identifying the leakage source location and rate is critical for developing remediation plans and designing corrective actions. Owing to limited information about the flow and transport characteristics of deep regimes and high cost of obtaining data on their response to CO2 injection operation, estimating accurate source settings (i.e., location and rate) can be extremely challenging. Under such conditions, Bayesian inverse frameworks become useful tools to help identify potential leakage patterns. This study tests and validates an ensemble-based data-assimilation approach that reduces the uncertainty in the prior knowledge about source settings through conditioning forward transport models using relatively inexpensive easy-to-acquire shallow zone data. The approach incorporates the newly developed ensemble smoother tool in the inversion code “PEST++” with the transport code “FEFLOW” to perform history matching and uncertainty analysis. A novel parameterization method that allows the disposition of potential source was used to search the leakage location during calibration process. In the absence of field data, the approach was validated using experimental data generated in ~8 m long soil tank simulating leakage from storage zone migrating to the shallow aquifer. The results show that source location uncertainty can be reasonably reduced using shallow zone data collected from near-surface aquifers. However, more prior information about the system and deeper data are essential to estimate a practical probability range for the leakage rate. 
    more » « less