skip to main content


Title: Quantum SDP Solvers: Large Speed-Ups, Optimality, and Applications to Quantum Learning
We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum speed-ups. We consider SDP instances with m constraint matrices, each of dimension n, rank at most r, and sparsity s. The first algorithm assumes an input model where one is given access to an oracle to the entries of the matrices at unit cost. We show that it has run time O~(s^2 (sqrt{m} epsilon^{-10} + sqrt{n} epsilon^{-12})), with epsilon the error of the solution. This gives an optimal dependence in terms of m, n and quadratic improvement over previous quantum algorithms (when m ~~ n). The second algorithm assumes a fully quantum input model in which the input matrices are given as quantum states. We show that its run time is O~(sqrt{m}+poly(r))*poly(log m,log n,B,epsilon^{-1}), with B an upper bound on the trace-norm of all input matrices. In particular the complexity depends only polylogarithmically in n and polynomially in r. We apply the second SDP solver to learn a good description of a quantum state with respect to a set of measurements: Given m measurements and a supply of copies of an unknown state rho with rank at most r, we show we can find in time sqrt{m}*poly(log m,log n,r,epsilon^{-1}) a description of the state as a quantum circuit preparing a density matrix which has the same expectation values as rho on the m measurements, up to error epsilon. The density matrix obtained is an approximation to the maximum entropy state consistent with the measurement data considered in Jaynes' principle from statistical mechanics. As in previous work, we obtain our algorithm by "quantizing" classical SDP solvers based on the matrix multiplicative weight update method. One of our main technical contributions is a quantum Gibbs state sampler for low-rank Hamiltonians, given quantum states encoding these Hamiltonians, with a poly-logarithmic dependence on its dimension, which is based on ideas developed in quantum principal component analysis. We also develop a "fast" quantum OR lemma with a quadratic improvement in gate complexity over the construction of Harrow et al. [Harrow et al., 2017]. We believe both techniques might be of independent interest.  more » « less
Award ID(s):
1816695
NSF-PAR ID:
10106371
Author(s) / Creator(s):
 ; ; ; ; ;
Date Published:
Journal Name:
Leibniz international proceedings in informatics
ISSN:
1868-8969
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a weighted approach to compute a maximum cardinality matching in an arbitrary bipartite graph. Our main result is a new algorithm that takes as input a weighted bipartite graph G(A cup B,E) with edge weights of 0 or 1. Let w <= n be an upper bound on the weight of any matching in G. Consider the subgraph induced by all the edges of G with a weight 0. Suppose every connected component in this subgraph has O(r) vertices and O(mr/n) edges. We present an algorithm to compute a maximum cardinality matching in G in O~(m(sqrt{w} + sqrt{r} + wr/n)) time. When all the edge weights are 1 (symmetrically when all weights are 0), our algorithm will be identical to the well-known Hopcroft-Karp (HK) algorithm, which runs in O(m sqrt{n}) time. However, if we can carefully assign weights of 0 and 1 on its edges such that both w and r are sub-linear in n and wr=O(n^{gamma}) for gamma < 3/2, then we can compute maximum cardinality matching in G in o(m sqrt{n}) time. Using our algorithm, we obtain a new O~(n^{4/3}/epsilon^4) time algorithm to compute an epsilon-approximate bottleneck matching of A,B subsetR^2 and an 1/(epsilon^{O(d)}}n^{1+(d-1)/(2d-1)}) poly log n time algorithm for computing epsilon-approximate bottleneck matching in d-dimensions. All previous algorithms take Omega(n^{3/2}) time. Given any graph G(A cup B,E) that has an easily computable balanced vertex separator for every subgraph G'(V',E') of size |V'|^{delta}, for delta in [1/2,1), we can apply our algorithm to compute a maximum matching in O~(mn^{delta/1+delta}) time improving upon the O(m sqrt{n}) time taken by the HK-Algorithm. 
    more » « less
  2. An \ell _p oblivious subspace embedding is a distribution over r \times n matrices \Pi such that for any fixed n \times d matrix A , \[ \Pr _{\Pi }[\textrm {for all }x, \ \Vert Ax\Vert _p \le \Vert \Pi Ax\Vert _p \le \kappa \Vert Ax\Vert _p] \ge 9/10,\] where r is the dimension of the embedding, \kappa is the distortion of the embedding, and for an n -dimensional vector y , \Vert y\Vert _p = (\sum _{i=1}^n |y_i|^p)^{1/p} is the \ell _p -norm. Another important property is the sparsity of \Pi , that is, the maximum number of non-zero entries per column, as this determines the running time of computing \Pi A . While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the important case of 1 \le p \lt 2 , much less was known. In this article, we obtain nearly optimal tradeoffs for \ell _1 oblivious subspace embeddings, as well as new tradeoffs for 1 \lt p \lt 2 . Our main results are as follows: (1) We show for every 1 \le p \lt 2 , any oblivious subspace embedding with dimension r has distortion \[ \kappa = \Omega \left(\frac{1}{\left(\frac{1}{d}\right)^{1 / p} \log ^{2 / p}r + \left(\frac{r}{n}\right)^{1 / p - 1 / 2}}\right).\] When r = {\operatorname{poly}}(d) \ll n in applications, this gives a \kappa = \Omega (d^{1/p}\log ^{-2/p} d) lower bound, and shows the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to {\operatorname{poly}}(\log (d)) factors. (2) We give sparse oblivious subspace embeddings for every 1 \le p \lt 2 . Importantly, for p = 1 , we achieve r = O(d \log d) , \kappa = O(d \log d) and s = O(\log d) non-zero entries per column. The best previous construction with s \le {\operatorname{poly}}(\log d) is due to Woodruff and Zhang (COLT, 2013), giving \kappa = \Omega (d^2 {\operatorname{poly}}(\log d)) or \kappa = \Omega (d^{3/2} \sqrt {\log n} \cdot {\operatorname{poly}}(\log d)) and r \ge d \cdot {\operatorname{poly}}(\log d) ; in contrast our r = O(d \log d) and \kappa = O(d \log d) are optimal up to {\operatorname{poly}}(\log (d)) factors even for dense matrices. We also give (1) \ell _p oblivious subspace embeddings with an expected 1+\varepsilon number of non-zero entries per column for arbitrarily small \varepsilon \gt 0 , and (2) the first oblivious subspace embeddings for 1 \le p \lt 2 with O(1) -distortion and dimension independent of n . Oblivious subspace embeddings are crucial for distributed and streaming environments, as well as entrywise \ell _p low-rank approximation. Our results give improved algorithms for these applications. 
    more » « less
  3. We investigate quantum algorithms for classification, a fundamental problem in machine learning, with provable guarantees. Given n d-dimensional data points, the state-of-the-art (and optimal) classical algorithm for training classifiers with constant margin by Clarkson et al. runs in Õ (n+d), which is also optimal in its input/output model. We design sublinear quantum algorithms for the same task running in Õ (\sqrt{n}+\sqrt{d}), a quadratic improvement in both n and d. Moreover, our algorithms use the standard quantization of the classical input and generate the same classical output, suggesting minimal overheads when used as subroutines for end-to-end applications. We also demonstrate a tight lower bound (up to poly-log factors) and discuss the possibility of implementation on near-term quantum machines. 
    more » « less
  4. Woodruff, David P. (Ed.)
    We give improved algorithms for maintaining edge-orientations of a fully-dynamic graph, such that the maximum out-degree is bounded. On one hand, we show how to orient the edges such that maximum out-degree is proportional to the arboricity $\alpha$ of the graph, in, either, an amortised update time of $O(\log^2 n \log \alpha)$, or a worst-case update time of $O(\log^3 n \log \alpha)$. On the other hand, motivated by applications including dynamic maximal matching, we obtain a different trade-off. Namely, the improved update time of either $O(\log n \log \alpha)$, amortised, or $O(\log ^2 n \log \alpha)$, worst-case, for the problem of maintaining an edge-orientation with at most $O(\alpha + \log n)$ out-edges per vertex. Finally, all of our algorithms naturally limit the recourse to be polylogarithmic in $n$ and $\alpha$. Our algorithms adapt to the current arboricity of the graph, and yield improvements over previous work: Firstly, we obtain deterministic algorithms for maintaining a $(1+\varepsilon)$ approximation of the maximum subgraph density, $\rho$, of the dynamic graph. Our algorithms have update times of $O(\varepsilon^{-6}\log^3 n \log \rho)$ worst-case, and $O(\varepsilon^{-4}\log^2 n \log \rho)$ amortised, respectively. We may output a subgraph $H$ of the input graph where its density is a $(1+\varepsilon)$ approximation of the maximum subgraph density in time linear in the size of the subgraph. These algorithms have improved update time compared to the $O(\varepsilon^{-6}\log ^4 n)$ algorithm by Sawlani and Wang from STOC 2020. Secondly, we obtain an $O(\varepsilon^{-6}\log^3 n \log \alpha)$ worst-case update time algorithm for maintaining a $(1~+~\varepsilon)\textnormal{OPT} + 2$ approximation of the optimal out-orientation of a graph with adaptive arboricity $\alpha$, improving the $O(\varepsilon^{-6}\alpha^2 \log^3 n)$ algorithm by Christiansen and Rotenberg from ICALP 2022. This yields the first worst-case polylogarithmic dynamic algorithm for decomposing into $O(\alpha)$ forests. Thirdly, we obtain arboricity-adaptive fully-dynamic deterministic algorithms for a variety of problems including maximal matching, $\Delta+1$ colouring, and matrix vector multiplication. All update times are worst-case $O(\alpha+\log^2n \log \alpha)$, where $\alpha$ is the current arboricity of the graph. For the maximal matching problem, the state-of-the-art deterministic algorithms by Kopelowitz, Krauthgamer, Porat, and Solomon from ICALP 2014 runs in time $O(\alpha^2 + \log^2 n)$, and by Neiman and Solomon from STOC 2013 runs in time $O(\sqrt{m})$. We give improved running times whenever the arboricity $\alpha \in \omega( \log n\sqrt{\log\log n})$. 
    more » « less
  5. null (Ed.)
    We consider the classical Minimum Balanced Cut problem: given a graph $G$, compute a partition of its vertices into two subsets of roughly equal volume, while minimizing the number of edges connecting the subsets. We present the first {\em deterministic, almost-linear time} approximation algorithm for this problem. Specifically, our algorithm, given an $n$-vertex $m$-edge graph $G$ and any parameter $1\leq r\leq O(\log n)$, computes a $(\log m)^{r^2}$-approximation for Minimum Balanced Cut on $G$, in time $O\left ( m^{1+O(1/r)+o(1)}\cdot (\log m)^{O(r^2)}\right )$. In particular, we obtain a $(\log m)^{1/\epsilon}$-approximation in time $m^{1+O(1/\sqrt{\epsilon})}$ for any constant $\epsilon$, and a $(\log m)^{f(m)}$-approximation in time $m^{1+o(1)}$, for any slowly growing function $m$. We obtain deterministic algorithms with similar guarantees for the Sparsest Cut and the Lowest-Conductance Cut problems. Our algorithm for the Minimum Balanced Cut problem in fact provides a stronger guarantee: it either returns a balanced cut whose value is close to a given target value, or it certifies that such a cut does not exist by exhibiting a large subgraph of $G$ that has high conductance. We use this algorithm to obtain deterministic algorithms for dynamic connectivity and minimum spanning forest, whose worst-case update time on an $n$-vertex graph is $n^{o(1)}$, thus resolving a major open problem in the area of dynamic graph algorithms. Our work also implies deterministic algorithms for a host of additional problems, whose time complexities match, up to subpolynomial in $n$ factors, those of known randomized algorithms. The implications include almost-linear time deterministic algorithms for solving Laplacian systems and for approximating maximum flows in undirected graphs. 
    more » « less