Prior studies have already predicted that enforcement of IP on the additive manufacturing industry will not be successful due to the widespread use of file-sharing technologies, similar to the entertainment and music industry. This paper discusses the capabilities of Blockchain technology for protecting IP in the design and manufacturing area. A conceptual framework for a digital platform is defined in this paper and further, a survey study of engineering design and manufacturing students has been conducted to identify the main motivation behind developing these platforms and the types of features that should be included in Blockchain-based IP platforms for asset protection, particularly for product design. In addition, respondents provided their opinions about the type of industry that might be affected more by the threat of counterfeiting products and the role of Blockchain-based IP systems on the growth and development of innovation.
more »
« less
A Conceptual Framework for Using Videogrammetry in Blockchain Platforms for Food SupplyChain Traceability
With the modern age of using genetically engineered products and growing concerns about food recalls and outbreaks, businesses are looking for ways to secure their brand names and assuring consumers about food safety and quality. Recently, Blockchain has been introduced as a promising approach for increasing the visibility of the supply chain and reducing the sale of contaminated and counterfeit products. Along this line, this study discusses the capabilities of Blockchain for the collection and monitoring of product lifecycle information ranging from production, wholesale, and logistics to standards, business reputation, and certification. The particular focus of the study is to discuss the use of videogrammetry as a data collection mechanism for bringing the product lifecycle data on digital Blockchain platforms and solving the “last mile” problem and data verification issue on Blockchain platforms. A conceptual example of organic meat processing is discussed to describe the proposed procedure and show how videogrammetry in combination with RFID and fingerprints can be used to solve the data verification issue on Blockchain platforms.
more »
« less
- Award ID(s):
- 1705621
- PAR ID:
- 10106432
- Date Published:
- Journal Name:
- Proceedings of the ASME 2019 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2019, August 18-21, 2019, Anaheim, California, USA
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The potential of smart cities in remediating environmental problems in general and waste management, in particular, is an important question that needs to be investigated in academic research. Built on an integrative review of the literature, this study offers insights into the potential of smart cities and connected communities in facilitating waste management efforts. Shortcomings of existing waste management practices are highlighted and a conceptual framework for a centralized waste management system is proposed, where three interconnected elements are discussed: (1) an infrastructure for proper collection of product lifecycle data to facilitate full visibility throughout the entire lifespan of a product, (2) a set of new business models relied on product lifecycle data to prevent waste generation, and (3) an intelligent sensor-based infrastructure for proper upstream waste separation and on-time collection. The proposed framework highlights the value of product lifecycle data in reducing waste and enhancing waste recovery and the need for connecting waste management practices to the whole product lifecycle. An example of the use of tracking and data sharing technologies for investigating the waste management issues has been discussed. Finally, the success factors for implementing the proposed framework and some thoughts on future research directions have been discussed.more » « less
-
As manufacturing processes become increasingly complex, maintaining quality and improving efficiency requires mapping of process flows. Mapping process flows, in turn, depends on comprehensive end-to-end data traceability. Such traceability relies on lifecycle data that capture every stage, from raw-material handling to final-product assembly, and provide indispensable insights for process refinement. However, conventional centralized database-based systems for managing these data introduce single points of failure and remain vulnerable to tampering and cyberattacks. As a result, data traceability and authenticity are compromised. Therefore, this research develops a novel blockchain architecture coupled with digital twin (DT) model to secure end-to-end documentation of manufacturing process flows. First, a hierarchical blockchain framework is developed to record production events and ensure comprehensive, tamper-proof records of process activities. Second, the DT model, operating in collaboration with the blockchain tiers, enables real-time alignment between the manufacturing floor and its virtual twin. Third, a unified data representation is designed to transform diverse manufacturing datasets into a homogeneously structured format. Experimental results show that the proposed framework significantly enhances data authenticity while reducing the time required to map manufacturing process flows.more » « less
-
The objective of this study is to provide an overview of Blockchain technology and Industry 4.0 for advancing supply chains towards sustainability. First, extracted from the existing literature, we evaluate the capabilities of Industry 4.0 for sustainability under three main topics of (1) Internet of things (IoT)-enabled energy management in smart factories; (2) smart logistics and transportation; and (3) smart business models. We expand beyond Industry 4.0 with unfolding the capabilities that Blockchain offers for increasing sustainability, under four main areas: (1) design of incentive mechanisms and tokenization to promote consumer green behavior; (2) enhance visibility across the entire product lifecycle; (3) increase systems efficiency while decreasing development and operational costs; and (4) foster sustainability monitoring and reporting performance across supply chain networks. Furthermore, Blockchain technology capabilities for contributing to social and environmental sustainability, research gaps, adversary effects of Blockchain, and future research directions are discussed.more » « less
-
Blockchain technology has evolved from being an immutable ledger of transactions for cryptocurrencies to a programmable interactive environment for building distributed reliable applications. Although the blockchain technology has been used to address various challenges, to our knowledge none of the previous work focused on using Blockchain to develop a secure and immutable scientific data provenance management framework that automatically verifies the provenance records. In this work, we leverage Blockchain as a platform to facilitate trustworthy data provenance collection, verification, and management. The developed system utilizes smart contracts and open provenance model (OPM) to record immutable data trails. We show that our proposed framework can securely capture and validate provenance data that prevents any malicious modification to the captured data as long as the majority of the participants are honest.more » « less
An official website of the United States government

