skip to main content


Title: A Conceptual Framework for Using Videogrammetry in Blockchain Platforms for Food SupplyChain Traceability
With the modern age of using genetically engineered products and growing concerns about food recalls and outbreaks, businesses are looking for ways to secure their brand names and assuring consumers about food safety and quality. Recently, Blockchain has been introduced as a promising approach for increasing the visibility of the supply chain and reducing the sale of contaminated and counterfeit products. Along this line, this study discusses the capabilities of Blockchain for the collection and monitoring of product lifecycle information ranging from production, wholesale, and logistics to standards, business reputation, and certification. The particular focus of the study is to discuss the use of videogrammetry as a data collection mechanism for bringing the product lifecycle data on digital Blockchain platforms and solving the “last mile” problem and data verification issue on Blockchain platforms. A conceptual example of organic meat processing is discussed to describe the proposed procedure and show how videogrammetry in combination with RFID and fingerprints can be used to solve the data verification issue on Blockchain platforms.  more » « less
Award ID(s):
1705621
NSF-PAR ID:
10106432
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the ASME 2019 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2019, August 18-21, 2019, Anaheim, California, USA
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Prior studies have already predicted that enforcement of IP on the additive manufacturing industry will not be successful due to the widespread use of file-sharing technologies, similar to the entertainment and music industry. This paper discusses the capabilities of Blockchain technology for protecting IP in the design and manufacturing area. A conceptual framework for a digital platform is defined in this paper and further, a survey study of engineering design and manufacturing students has been conducted to identify the main motivation behind developing these platforms and the types of features that should be included in Blockchain-based IP platforms for asset protection, particularly for product design. In addition, respondents provided their opinions about the type of industry that might be affected more by the threat of counterfeiting products and the role of Blockchain-based IP systems on the growth and development of innovation. 
    more » « less
  2. Data sharing is an integral component of research and academic publications, allowing for independent verification of results. Researchers have the ability to extend and build upon prior research when they are able to efficiently access, validate, and verify the data referenced in publications. Despite the well known benefits of making research data more open, data withholding rates have remained constant. Some disincentives to sharing research data include lack of credit, and fear of misrepresentation of data in the absence of context and provenance. While there are several research data sharing repositories that focus on making research data available, there are no cyberinfrastructure platforms that enable researchers to efficiently validate the authenticity of datasets, track the provenance, view the lineage of the data and verify ownership information. In this paper, we introduce and provide an overview of the NSF funded Open Science Chain, a cyberinfrastructure platform built using blockchain technologies that securely stores metadata and verification information about research data and tracks changes to that data in an auditable manner in order to address issues related to reproducibility and accountability in scientific research. 
    more » « less
  3. The potential of smart cities in remediating environmental problems in general and waste management, in particular, is an important question that needs to be investigated in academic research. Built on an integrative review of the literature, this study offers insights into the potential of smart cities and connected communities in facilitating waste management efforts. Shortcomings of existing waste management practices are highlighted and a conceptual framework for a centralized waste management system is proposed, where three interconnected elements are discussed: (1) an infrastructure for proper collection of product lifecycle data to facilitate full visibility throughout the entire lifespan of a product, (2) a set of new business models relied on product lifecycle data to prevent waste generation, and (3) an intelligent sensor-based infrastructure for proper upstream waste separation and on-time collection. The proposed framework highlights the value of product lifecycle data in reducing waste and enhancing waste recovery and the need for connecting waste management practices to the whole product lifecycle. An example of the use of tracking and data sharing technologies for investigating the waste management issues has been discussed. Finally, the success factors for implementing the proposed framework and some thoughts on future research directions have been discussed. 
    more » « less
  4. Since its emergence, the cloud manufacturing concept has been transforming the manufacturing and remanufacturing industry into a big data and service-oriented environment. The aggressive push toward data collection in cloud-based and cyber-physical systems provides both challenges and opportunities for predictive analytics. One of the key applications of predictive analytics in such domains is predictive quality management that aims to fully exploit the potentials provided by the enormous data collected via cloud-based systems. As a case study, a data set of hard disk drives’ Self-Monitoring, Analysis and Reporting Technology (SMART) attributes from a cloud-storage service provider has been analyzed to derive some insights about the challenges and opportunities of using product lifecycle data. An analysis of time-to-failure monitoring of hard disk drives in real-time has been carried out and the corresponding challenges have been discussed. 
    more » « less
  5. The objective of this study is to provide an overview of Blockchain technology and Industry 4.0 for advancing supply chains towards sustainability. First, extracted from the existing literature, we evaluate the capabilities of Industry 4.0 for sustainability under three main topics of (1) Internet of things (IoT)-enabled energy management in smart factories; (2) smart logistics and transportation; and (3) smart business models. We expand beyond Industry 4.0 with unfolding the capabilities that Blockchain offers for increasing sustainability, under four main areas: (1) design of incentive mechanisms and tokenization to promote consumer green behavior; (2) enhance visibility across the entire product lifecycle; (3) increase systems efficiency while decreasing development and operational costs; and (4) foster sustainability monitoring and reporting performance across supply chain networks. Furthermore, Blockchain technology capabilities for contributing to social and environmental sustainability, research gaps, adversary effects of Blockchain, and future research directions are discussed. 
    more » « less