skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Determine a Magnetic Schrödinger Operator with a Bounded Magnetic Potential from Partial Data in a Slab
Award ID(s):
1715178
PAR ID:
10106526
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Applied Mathematics & Optimization
ISSN:
0095-4616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Two-dimensional van der Waals materials such as graphene present an opportunity for band structure engineering using custom superlattice potentials. In this study, we demonstrate how self-assemblies of magnetic iron-oxide (Fe3O4) nanospheres stacked on monolayer graphene generate a proximity-induced magnetic superlattice in graphene and modify its band structure. Interactions between the nanospheres and the graphene layer generate superlattice Dirac points in addition to a gapped energy spectrum near the K and K′ valleys, resulting in magnetic confinement of quasiparticles around the nanospheres. This is evidenced by gate-dependent resistance oscillations, observed in our low temperature transport measurements, and confirmed by self-consistent tight binding calculations. Furthermore, we show that an external magnetic field can tune the magnetic superlattice potential created by the nanospheres, and thus the transport characteristics of the system. This technique for magnetic-field-tuned band structure engineering using magnetic nanostructures can be extended to a broader class of 2D van der Waals and topological materials. 
    more » « less
  2. Abstract Magnetic liquid metal (MLM) is a mixture of magnetic particles with gallium‐based liquid metals which utilizes an unconventional combination of fluidity, high thermal/electrical conductivity, biocompatibility, and magnetism. Recently, from materials to applications, studies on MLMs have drastically increased. Single or multiple MLMs can be precisely positioned or can act as a carrier for handling other objects. MLMs are also used in biomedical applications such as cancer treatment by hyperthermia and precision delivery of cancer drugs on tumors, or antibacterial coating which kills bacteria. In electronics applications, MLMs are used for magnetic field‐driven patterning of metallic lines, reconfigurable interconnects, electronic tattoos, and reconfigurable electromagnetic wave shielding. Phase change (solid/liquid) of MLMs adds another unique capability, morphing. A combination of innovations in the micro/nano robots and MLMs has huge potential to bring an unprecedented disruptive technology for a wide variety of applications including self‐morphing shape‐recovery robots, highly localized cancer treatment, and reconfigurable stealth/camouflage, among others. This article comprehensively reviews recent developments in MLMs from the materials to methods of preparation, locomotion of MLMs, their applications, and future outlooks. 
    more » « less