skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Demonstration of SpeakQL: Speech-driven Multimodal Querying of Structured Data
In this demonstration, we present SpeakQL, a speech-driven query system and interface for structured data. SpeakQL supports a tractable and practically useful subset of regular SQL, allowing users to query in any domain with unbounded vocabulary with the help of speech/touch based user-in-the-loop mechanisms for correction. When querying in such domains, automatic speech recognition introduces countless forms of errors in transcriptions, presenting us with a technical challenge. We characterize such errors and leverage our observations along with SQL's unambiguous context-free grammar to first correct the query structure. We then exploit phonetic representation of the queried database to identify the correct Literals, hence delivering the corrected transcribed query. In this demo, we show that SpeakQL helps users reduce time and effort in specifying SQL queries significantly. In addition, we show that SpeakQL, unlike Natural Language Interfaces and conversational assistants, allows users to query over any arbitrary database schema. We allow the audience to explore SpeakQL using an easy-to-use web-based interface to compose SQL queries.  more » « less
Award ID(s):
1816701
PAR ID:
10106631
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2019 International Conference on Management of Data
Page Range / eLocation ID:
2001 to 2004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Speech-driven querying is becoming popular in new device environments such as smartphones, tablets, and even conversational assistants. However, such querying is largely restricted to natural language. Typed SQL remains the gold standard for sophisticated structured querying although it is painful in many environments, which restricts when and how users consume their data. In this work, we propose to bridge this gap by designing a speech-driven querying system and interface for structured data we call SpeakQL. We support a practically useful subset of regular SQL and allow users to query in any domain with novel touch/speech based human-in-the-loop correction mechanisms. Automatic speech recognition (ASR) introduces myriad forms of errors in transcriptions, presenting us with a technical challenge. We exploit our observations of SQL's properties, its grammar, and the queried database to build a modular architecture. We present the first dataset of spoken SQL queries and a generic approach to generate them for any arbitrary schema. Our experiments show that SpeakQL can automatically correct a large fraction of errors in ASR transcriptions. User studies show that SpeakQL can help users specify SQL queries significantly faster with a speedup of average 2.7x and up to 6.7x compared to typing on a tablet device. SpeakQL also reduces the user effort in specifying queries by a factor of average 10x and up to 60x compared to raw typing effort. 
    more » « less
  2. Relational databases play an important role in business, science, and more. However, many users cannot fully unleash the analytical power of relational databases, because they are not familiar with database languages such as SQL. Many techniques have been proposed to automatically generate SQL from natural language, but they suffer from two issues: (1) they still make many mistakes, particularly for complex queries, and (2) they do not provide a flexible way for non-expert users to validate and refine incorrect queries. To address these issues, we introduce a new interaction mechanism that allows users to directly edit a step-by-step explanation of a query to fix errors. Our experiments on multiple datasets, as well as a user study with 24 participants, demonstrate that our approach can achieve better performance than multiple SOTA approaches. 
    more » « less
  3. Join query evaluation with ordering is a fundamental data processing task in relational database management systems. SQL and custom graph query languages such as Cypher offer this functionality by allowing users to specify the order via the ORDER BY clause. In many scenarios, the users also want to see the first k results quickly (expressed by the LIMIT clause), but the value of k is not predetermined as user queries are arriving in an online fashion. Recent work has made considerable progress in identifying optimal algorithms for ranked enumeration of join queries that do not contain any projections. In this paper, we initiate the study of the problem of enumerating results in ranked order for queries with projections. Our main result shows that for any acyclic query, it is possible to obtain a near-linear (in the size of the database) delay algorithm after only a linear time preprocessing step for two important ranking functions: sum and lexicographic ordering. For a practical subset of acyclic queries known as star queries, we show an even stronger result that allows a user to obtain a smooth tradeoff between faster answering time guarantees using more preprocessing time. Our results are also extensible to queries containing cycles and unions. We also perform a comprehensive experimental evaluation to demonstrate that our algorithms, which are simple to implement, improve up to three orders of magnitude in the running time over state-of-the-art algorithms implemented within open-source RDBMS and specialized graph databases. 
    more » « less
  4. Mastering SQL is a key data science competence. While most large language models are able to translate natural language queries to SQL, their ability to tutor learners and authentically assess student assignments are at the least fragile. In this paper, we introduce {\em ExplainS} as an experimental prototype. In this web-based system, we augment Gemini with abstract syntax tree (AST) to enhance Gemini's semantic analysis power to be able to assist and tutor students better. This edition of ExplainS provides a collection of exercises with varying difficulty levels, covering core SQL concepts. Users interact with a dynamic schema display, and their queries are validated against carefully crafted solutions. To provide context-aware personalized feedback, ExplainS leverages Gemini and the SQLglot library to analyze query AST differences between user queries and correct solutions, pinpointing the root cause of errors. This emerging research is part of a wider Data Science effort, and in this paper, we only focus on the meaningful feedback generation component of the ExplainS system. 
    more » « less
  5. Software projects produce large quantities of data such as feature requests, requirements, design artifacts, source code, tests, safety cases, release plans, and bug reports. If leveraged effectively, this data can be used to provide project intelligence that supports diverse software engineering activities such as release planning, impact analysis, and software analytics. However, project stakeholders often lack skills to formulate complex queries needed to retrieve, manipulate, and display the data in meaningful ways. To address these challenges we introduce TiQi, a natural language interface, which allows users to express software-related queries verbally or written in natural language. TiQi is a web-based tool. It visualizes available project data as a prompt to the user, accepts Natural Language (NL) queries, transforms those queries into SQL, and then executes the queries against a centralized or distributed database. Raw data is stored either directly in the database or retrieved dynamically at runtime from case tools and repositories such as Github and Jira. The transformed query is visualized back to the user as SQL and augmented UML, and raw data results are returned. Our tool demo can be found on YouTube at the following link:http://tinyurl.com/TIQIDemo. 
    more » « less