skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comprehensive comparison of pore-scale models for multiphase flow in porous media
Multiphase flows in porous media are important in many natural and industrial processes. Pore-scale models for multiphase flows have seen rapid development in recent years and are becoming increasingly useful as predictive tools in both academic and industrial applications. However, quantitative comparisons between different pore-scale models, and between these models and experimental data, are lacking. Here, we perform an objective comparison of a variety of state-of-the-art pore-scale models, including lattice Boltzmann, stochastic rotation dynamics, volume-of-fluid, level-set, phase-field, and pore-network models. As the basis for this comparison, we use a dataset from recent microfluidic experiments with precisely controlled pore geometry and wettability conditions, which offers an unprecedented benchmarking opportunity. We compare the results of the 14 participating teams both qualitatively and quantitatively using several standard metrics, such as fractal dimension, finger width, and displacement efficiency. We find that no single method excels across all conditions and that thin films and corner flow present substantial modeling and computational challenges.  more » « less
Award ID(s):
1803989
PAR ID:
10106702
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
28
ISSN:
0027-8424
Page Range / eLocation ID:
13799 to 13806
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Complex and active fluids find broad applications in flows through porous materials. Nontrivial rheology can couple to porous microstructure leading to surprising flow patterns and associated transport properties in geophysical, biological, and industrial systems. Viscoelastic instabilities are highly sensitive to pore geometry and can give rise to chaotic velocity fluctuations. A number of recent studies have begun to untangle how the pore-scale geometry influences the sample-scale flow topology and the resulting dispersive transport properties of these complex systems. Beyond classical rheological properties, active colloids and swimming cells exhibit a range of unique properties, including reduced effective viscosity, collective motion, and random walks, that present novel challenges to understanding their mechanics and transport in porous media flows. This review article aims to provide a brief overview of essential, fundamental concepts followed by an in-depth summary of recent developments in this rapidly evolving field. The chosen topics are motivated by applications, and new opportunities for discovery are highlighted. 
    more » « less
  2. Abstract Various researchers have studied fluctuations in pore‐scale phase occupancy during multiphase flow in porous media using synchrotron‐based X‐ray microcomputed tomography (micro‐CT). However, the impact of these fluctuations on the concept of a representative volume is not yet fully understood. In this study, we performed spatial and temporal averaging of multiphase flow experiments visualized with synchrotron‐based micro‐CT, focusing on oil saturation as the key parameter to determine a representative time‐and‐space average. Our findings revealed that a saturation value representative of both time and space was achieved during fractional flow experiments in drainage mode with fractional flows of 0.8, 0.5, and 0.3. Furthermore, we computed a range of relative permeabilities on the basis of whether momentaneous saturation or time‐and‐space averaged saturation was utilized for direct simulation. Our results highlighted the importance of time‐and‐space averaging in determining a representative relative permeability and indicated that the temporal and spatial scales covered in a typical micro‐CT flow experiment were sufficient to obtain a representative saturation value for sandstone rock under intermittent flow conditions. 
    more » « less
  3. Abstract Geophysical fluid‐granular flows, such as pyroclastic currents and debris flows, owe much of their runout and hazard behavior to the occurrence and time‐variant decay of a flow‐internal fluid pore pressure. However, modeling the effects of fluid pore pressure to forecast hazards is challenging because a unified method in Earth Sciences to quantitatively determine the permeability of these natural mixtures is currently missing. Here we combine experiments on fluidization and defluidization of pyroclastic materials, eolian sediments, and glass beads mixtures with numerical multiphase simulations to compare previous attempts to compute the permeability of complex natural particle‐fluid mixtures. In analogy to particle‐engineering studies on simple gas‐particle mixtures, we demonstrate that the effective length‐scale in the characterization of the fluid‐particle interaction of complex natural mixtures is the product of the Sauter mean diameter and the particle sphericity. Its use in the Kozeny‐Carman equation allows accurate prediction of mixture permeability, and we suggest the routine calculation of the Sauter mean from grain size distributions of the deposits of geophysical mass flows in Earth Sciences. We also show, through defluidization experiments, that the duration of gas retention in natural mixtures is well described when using the Sauter mean as the effective particle size. Further, we show through multiphase simulations that initial bed expansion extends the pore pressure diffusion timescale up to nine times. These results can be applied to small‐to‐large volume dense pyroclastic currents where the ranges of Sauter mean diameter predict gas retention for long duration and to debris flows and snow avalanches. 
    more » « less
  4. Blunt, MJ (Ed.)
    Multiphase fluid flow in porous media is important to a wide variety of processes of fundamental scientific and practical importance. Developing a model for the pore space of porous media represents the first step for simulating such flows. With rapid increase in the computation power and advances in instrumentation and imaging processes, it has become feasible to carry out simulation of multiphase flow in two- and three-dimensional images of porous media, hence dispensing with development of models of pore space that are based on approximating their morphology. Image-based simulations are, however, very time consuming. We describe an approach for speeding-up image-based simulation of multiphase flow in porous media based on curvelet transformations, which are specifically designed for processing of images that contain complex curved surfaces. Most porous media contain correlations in their morphology and, therefore, their images carry redundant information that, in the curvelet transform space, can be removed efficiently and accurately in order to obtain a coarser image with which the computations are far less intensive. We utilize the methodology to simulate two-phase flow of oil and water in two-dimensional digital images of sandstone and carbonate samples, and demonstrate that while the results with the curvelet-processed images are as accurate as those with the original ones, the computations are speeded up by a factor of 110–150. Thus, the methodology opens the way toward achieving the ultimate goal of simulation of multiphase flow in porous media, namely, making image-based computations a standard practice. 
    more » « less
  5. This study aims to bridge length scales in immiscible multiphase flow simulation by connecting two published governing equations at the pore-scale and continuum-scale through a novel validation framework. We employ Niessner and Hassnaizadeh's [“A model for two-phase flow in porous media including fluid-fluid interfacial area,” Water Resour. Res. 44(8), W08439 (2008)] continuum-scale model for multiphase flow in porous media, combined with the geometric equation of state of McClure et al. [“Modeling geometric state for fluids in porous media: Evolution of the Euler characteristic,” Transp. Porous Med. 133(2), 229–250 (2020)]. Pore-scale fluid configurations simulated with the lattice-Boltzmann method are used to validate the continuum-scale results. We propose a mapping from the continuum-scale to pore-scale utilizing a generalized additive model to predict non-wetting phase Euler characteristics during imbibition, effectively bridging the continuum-to-pore length scale gap. Continuum-scale simulated measures of specific interfacial area, saturation, and capillary pressure are directly compared to up-scaled pore-scale simulation results. This research develops a numerical framework capable of capturing multiscale flow equations establishing a connection between pore-scale and continuum-scale simulations. 
    more » « less