Graphene is a valuable material in biomedical implant applications due to its mechanical integrity, long-range order, and conductivity; but graphene must be chemically modified to increase biocompatibility and maximize functionality in the body. Here, we developed a foundational synthetic method for covalently functionalizing a reduced GO with bioactive molecules, focusing on synthetic peptides that have shown osteogenic or neurogenic capability as a prototypical example. X-ray photoelectron spectroscopy provides evidence that the peptide is covalently linked to the graphenic backbone. These peptide–graphene (Pep–G) conjugate materials can be processed into mechanically robust, three-dimensional constructs. Differences in their electrostatic charges allow the Pep–G conjugates to form self-assembled, layer-by-layer coatings. Further, the Pep–G conjugates are cytocompatible and electrically conductive, leading us to investigate their potential as regenerative scaffolds, as conductive surfaces can stimulate bone and nerve regeneration. Notably, PC12 cells grown on an electrically stimulated Pep–G scaffold demonstrated enhanced adhesion and neurite outgrowth compared to the control. The functionalization strategy developed here can be used to conjugate a wide variety of bioactive molecules to graphene oxide to create cell-instructive surfaces for biomedical scaffold materials. 
                        more » 
                        « less   
                    
                            
                            Light-Induced Metal-Free Transformations of Unactivated Pyridotriazoles
                        
                    
    
            A highly efficient and practical method for incorporation of arylmethylpyridyl moiety into diverse molecules has been developed. This method features the transition metal-free light-induced room temperature transformation of pyridotriazoles into pyridyl carbenes, which are capable of smooth arylation, X–H insertion, and cyclopropanation reactions. The synthetic usefulness of the developed method was illustrated in a facile synthesis of biologically active molecules. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1663779
- PAR ID:
- 10106880
- Date Published:
- Journal Name:
- Chemical Science
- ISSN:
- 2041-6520
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Creating a suitable compartment for synthetic cells has led the exploration of different cell chassis materials from phospholipids to polymer to protein-polymer conjugates. Currently, the majority of cell-like compartments are made of lipid molecules as the resulting membrane resembles that of a natural cell. However, cell-sized lipid vesicles are prone to physical and chemical stresses and can be unstable in hosting biochemical reactions within. Recently, peptide vesicles that are more robust and stable were developed as a new chassis material for synthetic cells. Here we demonstrate the facile and robust generation of giant peptide vesicles made of elastin-like polypeptides (ELPs) by using an emulsion transfer method. We show that these peptide vesicles can stably encapsulate molecules and can host cell-free expression reactions. We also demonstrate membrane incorporation of another amphiphilic ELP into existing peptide vesicles. Since ELPs are genetically encoded, the approaches presented here provide exciting opportunities to engineer synthetic cell membranes.more » « less
- 
            Abstract This work examines methods for predicting the partition coefficient (logP) for a dataset of small molecules. Here, we use atomic attributes such as radius and partial charge, which are typically used as force field parameters in classical molecular dynamics simulations. These atomic attributes are transformed into index‐invariant molecular features using a recently developed method called geometric scattering for graphs (GSG). We call this approach “ClassicalGSG” and examine its performance under a broad range of conditions and hyperparameters. We train ClassicalGSG logPpredictors with neural networks using 10,722 molecules from the OpenChem dataset and apply them to predict the logPvalues from four independent test sets. The ClassicalGSG method's performance is compared to a baseline model that employs graph convolutional networks. Our results show that the best prediction accuracies are obtained using atomic attributes generated with the CHARMM generalized force field and 2D molecular structures.more » « less
- 
            null (Ed.)Cells often respond to changes in their environment by producing new molecules and building new cell components, such as proteins, which perform most tasks in the cell, or DNA and RNA, which carry genetic information. Complex tissues – such as limbs, which are made up of muscles, tendons, bones and cartilage – are difficult to see through, so studying when and where cells in these tissues produce different types of molecules is challenging. New approaches combining advanced three-dimensional microscopy and fluorescent labelling of molecules could provide a way to study these processes within whole animal tissues. One application for this is studying how salamanders regrow lost limbs. When salamanders such as axolotls regrow a limb, some cells in the limb stump form a group called the blastema. The blastema contains cells that are specialized to different purposes. Each cell in the blastema produces many new proteins as well as new DNA and RNA molecules. Fluorescently labeling particular molecules and taking images of the regenerating limb at different times can help to reveal how these new molecules control and coordinate limb regrowth. Duerr et al. developed a three-dimensional microscopy technique to study the production of new molecules in regenerating axolotl limbs. The method labeled molecules of different types with fluorescent markers. As a result, new proteins, RNA and DNA glowed under different colored lights. Duerr et al. used their method to show that nerve damage, which hinders limb regrowth in salamanders, reduces DNA production in the blastema. There are many possible applications of this microscopy method. Since the technique allows the spatial arrangement of the cells and molecules studied to be preserved, it makes it possible to investigate which molecules each cell is making and how they interact across a tissue. Not only does the technique have the potential to reveal much more about limb regrowth at all stages, but the fluorescent markers used can also be easily adapted to many other applications.more » « less
- 
            null (Ed.)Introducing charge carriers is of paramount importance for increasing the efficiency of organic semiconducting materials. Various methods of extrinsic doping, where molecules or atoms with large/small reduction potentials are blended with the semiconductor, can lead to dopant aggregation, migration, phase segregation, and morphology alteration. Self-doping overcomes these challenges by structurally linking the dopant directly to the organic semiconductor. However, for their practical incorporation into devices, self-doped organic materials must be cast into thin-films, yet processing methods to allow for the formation of continuous and uniform films have not been developed beyond simple drop-casting. Whilst self-doped organic molecules afford the remarkable ability to position dopants with molecular precision and control of attachment mode, their steric bulk inevitably disrupts the crystallization on surfaces. As such, there is great interest in the development of processing modalities that allow deposited molecules to converge to the thermodynamic minimum of a well-ordered and highly crystalline organic thin film instead of getting trapped in local disordered minima that represent metastable configurations. By contrasting drop casting, ultrasonic deposition, and physical vapor deposition, we investigate the free energy landscape of the crystallization of sterically hindered self-doped perylene diimide thin films. A clear relationship is established between processing conditions, the crystallinity and order within the deposited films, the dopant structures and the resulting spin density. We find physical vapor deposition to be a robust method capable of producing smooth, continuous, highly ordered self-doped organic small molecule thin-films with tailored spin concentrations and well-defined morphologies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    