Red blood cell (RBC) disorders such as sickle cell disease affect billions worldwide. While much attention focuses on altered properties of aberrant RBCs and corresponding hemodynamic changes, RBC disorders are also associated with vascular dysfunction, whose origin remains unclear and which provoke severe consequences including stroke. Little research has explored whether biophysical alterations of RBCs affect vascular function. We use a detailed computational model of blood that enables characterization of cell distributions and vascular stresses in blood disorders and compare simulation results with experimental observations. Aberrant RBCs, with their smaller size and higher stiffness, concentrate near vessel walls (marginate) because of contrasts in physical properties relative to normal cells. In a curved channel exemplifying the geometric complexity of the microcirculation, these cells distribute heterogeneously, indicating the importance of geometry. Marginated cells generate large transient stress fluctuations on vessel walls, indicating a mechanism for the observed vascular inflammation.
more »
« less
Continuum- and Particle-Based Modeling of Human Red Blood Cells
Computational modeling and simulations can tackle a broad range of morphological, mechanical, and rheological problems relevant to blood and blood cells. Here, we review some continuum-based and particle-based computational approaches towards the modeling of healthy and diseased red blood cells (RBCs) with focus on the most recent contributions, including the three-level multiscale RBC model coupled with the boundary integral method of surrounding flows and two-component RBC models with explicit descriptions of lipid bilayer, cytoskeleton, and transmembrane proteins.
more »
« less
- PAR ID:
- 10106984
- Date Published:
- Journal Name:
- Handbook of Materials Modeling Applications: Current and Emerging Materials
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this work, we utilized a parameterization model of ektacytometry to quantify the bulk rigidity of the rigid red blood cell (RBC) population in sickle cell disease (SCD) patients. Current ektacytometry techniques implement laser diffraction viscometry to estimate the RBC deformability in a whole blood sample. However, the diffraction measurement is an average of all cells present in the measured sample. By coupling an existing parameterization model of ektacytometry to an artificially rigid RBC model, we formulated an innovative system for estimating the average rigidity of the rigid RBC population in SCD blood. We demonstrated that this method could more accurately determine the bulk stiffness of the rigid RBC populations. This information could potentially help develop the ektacytometry technique as a tool for assessing disease severity in SCD patients, offering novel insights into the disease pathology and treatment.more » « less
-
Transfusion of red blood cells (RBCs) is one of the most valuable and widespread treatments in modern medicine. Lifesaving RBC transfusions are facilitated by the cold storage of RBC units in blood banks worldwide. Currently, RBC storage and subsequent transfusion practices are performed using simplistic workflows. More specifically, most blood banks follow the “first-in-first-out” principle to avoid wastage, whereas most healthcare providers prefer the “last-in-first-out” approach simply favoring chronologically younger RBCs. Neither approach addresses recent advances through -omics showing that stored RBC quality is highly variable depending on donor-, time-, and processing-specific factors. Thus, it is time to rethink our workflows in transfusion medicine taking advantage of novel technologies to perform RBC quality assessment. We imagine a future where lab-on-a-chip technologies utilize novel predictive markers of RBC quality identified by -omics and machine learning to usher in a new era of safer and precise transfusion medicine.more » « less
-
AbstractSickle cell disease (SCD) is canonically characterized by reduced red blood cell (RBC) deformability, leading to microvascular obstruction and inflammation. Although the biophysical properties of sickle RBCs are known to influence SCD vasculopathy, the contribution of poor RBC deformability to endothelial dysfunction has yet to be fully explored. Leveraging interrelated in vitro and in silico approaches, we introduce a new paradigm of SCD vasculopathy in which poorly deformable sickle RBCs directly cause endothelial dysfunction via mechanotransduction, during which endothelial cells sense and pathophysiologically respond to aberrant physical forces independently of microvascular obstruction, adhesion, or hemolysis. We demonstrate that perfusion of sickle RBCs or pharmacologically-dehydrated healthy RBCs into small venule-sized “endothelialized” microfluidics leads to pathologic physical interactions with endothelial cells that directly induce inflammatory pathways. Using a combination of computational simulations and large venule-sized endothelialized microfluidics, we observed that perfusion of heterogeneous sickle RBC subpopulations with varying deformability, as well as suspensions of dehydrated normal RBCs admixed with normal RBCs, leads to aberrant margination of the less-deformable RBC subpopulations toward the vessel walls, causing localized, increased shear stress. Increased wall stress is dependent on the degree of subpopulation heterogeneity and oxygen tension and leads to inflammatory endothelial gene expression via mechanotransductive pathways. Our multifaceted approach demonstrates that the presence of sickle RBCs with reduced deformability leads directly to pathological physical (ie, direct collisions and/or compressive forces) and shear-mediated interactions with endothelial cells and induces an inflammatory response, thereby elucidating the ubiquity of vascular dysfunction in SCD.more » « less
-
Transport of cells in fluid flow plays a critical role in many physiological processes of the human body. Recent developments of in vitro techniques have enabled the understanding of cellular dynamics in laboratory conditions. However, it is challenging to obtain precise characteristics of cellular dynamics using experimental method alone, especially under in vivo conditions. This challenge motivates new developments of computational methods to provide complementary data that experimental techniques are not able to provide. Since there exists a large disparity in spatial and temporal scales in this problem, which requires a large number of cells to be simulated, it is highly desirable to develop an efficient numerical method for the interaction of cells and fluid flows. In this work, a new Fluid-Structure Interaction formulation is proposed based on the use of hybrid continuum-particle approach, which can resolve local dynamics of cells while providing large-scale flow patterns in the vascular vessel. Here, the Dissipative Particle Dynamics (DPD) model for the cellular membrane is used in conjunction with the Immersed Boundary Method (IBM) for the fluid plasma. Our results show that the new formulation is highly efficient in computing the deformation of cells within fluid flow while satisfying the incompressibility constraints of the fluid. We demonstrate that it is possible to couple the DPD with the IBM to simulate the complex dynamics of Red Blood Cells (RBC) such as parachuting. Our key observation is that the proposed coupling enables the simulation of RBC dynamics in realistic arterioles while ensuring the incompressibility constraint for fluid plasma. Therefore, the proposed method allows an accurate estimation of fluid shear stresses on the surface of simulated RBC. Our results suggest that this hybrid methodology can be extended for a variety of cells in physiological conditions.more » « less
An official website of the United States government

