skip to main content

Title: Hyperspectral imaging fluorescence excitation scanning (HIFEX) microscopy for live cell imaging
In the past two decades, spectral imaging technologies have expanded the capacity of fluorescence microscopy for accurate detection of multiple labels, separation of labels from cellular and tissue autofluorescence, and analysis of autofluorescence signatures. These technologies have been implemented using a range of optical techniques, such as tunable filters, diffraction gratings, prisms, interferometry, and custom Bayer filters. Each of these techniques has associated strengths and weaknesses with regard to spectral resolution, spatial resolution, temporal resolution, and signal-to-noise characteristics. We have previously shown that spectral scanning of the fluorescence excitation spectrum can provide greatly increased signal strength compared to traditional emission-scanning approaches. Here, we present results from utilizing a Hyperspectral Imaging Fluorescence Excitation Scanning (HIFEX) microscope system for live cell imaging. Live cell signaling studies were performed using HEK 293 and rat pulmonary microvascular endothelial cells (PMVECs), transfected with either a cAMP FRET reporter or a Ca2+ reporter. Cells were further labeled to visualize subcellular structures (nuclei, membrane, mitochondria, etc.). Spectral images were acquired using a custom inverted microscope (TE2000, Nikon Instruments) equipped with a 300W Xe arc lamp and tunable excitation filter (VF- 5, Sutter Instrument Co., equipped with VersaChrome filters, Semrock), and run through MicroManager. Timelapse spectral images were more » acquired from 350-550 nm, in 5 nm increments. Spectral image data were linearly unmixed using custom MATLAB scripts. Results indicate that the HIFEX microscope system can acquire live cell image data at acquisition speeds of 8 ms/wavelength band with minimal photobleaching, sufficient for studying moderate speed cAMP and Ca2+ events. « less
Authors:
; ; ; ; ; ; ; ; ; ;
Award ID(s):
1725937
Publication Date:
NSF-PAR ID:
10107064
Journal Name:
Proc. SPIE 10883, Three- Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXVI, 108831A
Volume:
10883
Page Range or eLocation-ID:
45
Sponsoring Org:
National Science Foundation
More Like this
  1. A major benefit of fluorescence microscopy is the now plentiful selection of fluorescent markers. These labels can be chosen to serve complementary functions, such as tracking labeled subcellular molecules near demarcated organelles. However, with the standard 3 or 4 emission channels, multiple label detection is restricted to segregated regions of the electromagnetic spectrum, as in RGB coloring. Hyperspectral imaging allows the user to discern many fluorescence labels by their unique spectral properties, provided there is significant differentiation of their emission spectra. The cost of this technique is often an increase in gain or exposure time to accommodate the signal reduction from separating the signal into many discrete excitation or emission channels. Recent advances in hyperspectral imaging have allowed the acquisition of more signal in a shorter time period by scanning the excitation spectra of fluorophores. Here, we explore the selection of optimal channels for both significant signal separation and sufficient signal detection using excitation-scanning hyperspectral imaging. Excitation spectra were obtained using a custom inverted microscope (TE-2000, Nikon Instruments) with a Xe arc lamp and thin film tunable filter array (VersaChrome, Semrock, Inc.) Tunable filters had bandwidths between 13 and 17 nm. Scans utilized excitation wavelengths between 340 nm and 550more »nm. Hyperspectral image stacks were generated and analyzed using ENVI and custom MATLAB scripts. Among channel consideration criteria were: number of channels, spectral range of scan, spacing of center wavelengths, and acquisition time.« less
  2. Autofluorescence has historically been considered a nuisance in medical imaging. Many endogenous fluorophores, specifically, collagen, elastin, NADH, and FAD, are found throughout the human body. Diagnostically, these signals can be prohibitive since they can outcompete signals introduced for diagnostic purposes. Recent advances in hyperspectral imaging have allowed the acquisition of significantly more data in a shorter time period by scanning the excitation spectra of fluorophores. The reduced acquisition time and increased signal-to-noise ratio allow for separation of significantly more fluorophores than previously possible. Here, we propose to utilize excitation-scanning of autofluorescence to examine tissues and diagnose pathologies. Spectra of autofluorescent molecules were obtained using a custom inverted microscope (TE-2000, Nikon Instruments) with a Xe arc lamp and thin film tunable filter array (VersaChrome, Semrock, Inc.) Scans utilized excitation wavelengths from 360 nm to 550 nm in 5 nm increments. The resultant spectra were used to examine hyperspectral image stacks from various collaborative studies, including an atherosclerotic rat model and a colon cancer study. Hyperspectral images were analyzed with ENVI and custom Matlab scripts including linear spectral unmixing (LSU) and principal component analysis (PCA). Initial results suggest the ability to separate the signals of endogenous fluorophores and measure the relative concentrationsmore »of fluorophores among healthy and diseased states of similar tissues. These results suggest pathology-specific changes to endogenous fluorophores can be detected using excitationscanning hyperspectral imaging. Future work will expand the library of pure molecules and will examine more defined disease states.« less
  3. Spectroscopic image data has provided molecular discrimination for numerous fields including: remote sensing, food safety and biomedical imaging. Despite the various technologies for acquiring spectral data, there remains a trade-off when acquiring data. Typically, spectral imaging either requires long acquisition times to collect an image stack with high spectral specificity or acquisition times are shortened at the expense of fewer spectral bands or reduced spatial sampling. Hence, new spectral imaging microscope platforms are needed to help mitigate these limitations. Fluorescence excitation-scanning spectral imaging is one such new technology, which allows more of the emitted signal to be detected than comparable emission-scanning spectral imaging systems. Here, we have developed a new optical geometry that provides spectral illumination for use in excitation-scanning spectral imaging microscope systems. This was accomplished using a wavelength-specific LED array to acquire spectral image data. Feasibility of the LED-based spectral illuminator was evaluated through simulation and benchtop testing and assessment of imaging performance when integrated with a widefield fluorescence microscope. Ray tracing simulations (TracePro) were used to determine optimal optical component selection and geometry. Spectral imaging feasibility was evaluated using a series of 6-label fluorescent slides. The LED-based system response was compared to a previously tested thin-film tunablemore »filter (TFTF)-based system. Spectral unmixing successfully discriminated all fluorescent components in spectral image data acquired from both the LED and TFTF systems. Therefore, the LED-based spectral illuminator provided spectral image data sets with comparable information content so as to allow identification of each fluorescent component. These results provide proof-of-principle demonstration of the ability to combine output from many discrete wavelength LED sources using a double-mirror (Cassegrain style) optical configuration that can be further modified to allow for high speed, video-rate spectral image acquisition. Real-time spectral fluorescence microscopy would allow monitoring of rapid cell signaling processes (i.e., Ca2+and other second messenger signaling) and has potential to be translated to clinical imaging platforms.

    « less
  4. Hyperspectral imaging technologies have shown great promise for biomedical applications. These techniques have been especially useful for detection of molecular events and characterization of cell, tissue, and biomaterial composition. Unfortunately, hyperspectral imaging technologies have been slow to translate to clinical devices – likely due to increased cost and complexity of the technology as well as long acquisition times often required to sample a spectral image. We have demonstrated that hyperspectral imaging approaches which scan the fluorescence excitation spectrum can provide increased signal strength and faster imaging, compared to traditional emission-scanning approaches. We have also demonstrated that excitation-scanning approaches may be able to detect spectral differences between colonic adenomas and adenocarcinomas and normal mucosa in flash-frozen tissues. Here, we report feasibility results from using excitation-scanning hyperspectral imaging to screen pairs of fresh tumoral and nontumoral colorectal tissues. Tissues were imaged using a novel hyperspectral imaging fluorescence excitation scanning microscope, sampling a wavelength range of 360-550 nm, at 5 nm increments. Image data were corrected to achieve a NIST-traceable flat spectral response. Image data were then analyzed using a range of supervised and unsupervised classification approaches within ENVI software (Harris Geospatial Solutions). Supervised classification resulted in >99% accuracy for single-patient image data,more »but only 64% accuracy for multi-patient classification (n=9 to date), with the drop in accuracy due to increased false-positive detection rates. Hence, initial data indicate that this approach may be a viable detection approach, but that larger patient sample sizes need to be evaluated and the effects of inter-patient variability studied.« less
  5. Coronary artery disease (CAD), or atherosclerosis, is responsible for nearly a third of all American deaths annually. Detection of plaques and differentiation of plaque stage remains a complicating factor for treatment. Classification of plaque before significant blockage or rupture could inform clinical decisions and prevent mortality. Current detection methods are either nonspecific, slow, or require the use of potentially harmful contrast agents. Recent advances in hyperspectral imaging could be used to detect changes in the autofluorescence of arteries associated with vessel remodeling and subsequent plaque formation and could detect and classify existing lesions. Here, we present data comparing spectral image characteristics of a mouse model designed to undergo vessel remodeling. C57Bl/6 mice underwent ligation of three of four caudal branches of the left common carotid artery (left external carotid, internal carotid, and occipital artery) with the superior thyroid artery left intact under IACUC approved protocol. Vessels were harvested at a variety of timepoints to compare degrees of remodeling, including 4 weeks and 5 months post-surgery. Immediately following harvest, vessels were prepared by longitudinal opening to expose the luminal surface to a 20X objective. A custom inverted microscope (TE-2000, Nikon Instruments) with a Xe arc lamp and thin film tunable filtermore »arrary (Versachrome, Semrock, Inc.) were used to achieve spectral imaging. Excitation scans utilized wavelengths between 340 nm and 550 nm in 5 nm increments. Hyperspectral data were generated and analyzed with custom Matlab scripts and visualized in ENVI. Preliminary data suggest consistent spectral features associated with control and remodeled vessels. © (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.« less