skip to main content

Title: Babylonian encounters in the Upper Diyala River valley: Contextualizing the results of regional survey and the 2016-2017 excavations at Khani Masi
Kassite Babylonia counts among the great powers of the Late Bronze Age Near East. Its kings exchanged diplomatic letters with the pharaohs of Egypt and held their own against their Assyrian and Elamite neighbors. Babylonia’s internal workings, however, remain understood in their outlines only, as do its elite’s expansionary ambitions, the degrees to which they may have been realized, and the nature of ensuing imperial encounters. This is especially the case for the region to the northeast, where the Mesopotamian lowlands meet the Zagros piedmonts in the Diyala River valley and where a series of corridors of movement intersect to form a strategic highland-lowland borderland. In this paper, we present critical new results of regional survey in the Upper Diyala plains of northeast Iraq and excavations at the Late Bronze Age site of Khani Masi. Not only do our data and analyses expand considerably the known extent of Babylonia’s cultural sphere, but also the monumental character of Khani Masi and its wider settlement context prompt a fundamental rethinking of the nature and chronology of Babylonian presence in this transitional landscape. As such, this paper contributes an important new case study to the field of archaeological empire and borderland studies.
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
American journal of archaeology
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Temples in antis provide clearly defined liminal spaces for ritual behaviors that are readily recognizable both textually and archaeologically. This architectural form and the religious tradition it embodied were remarkably widespread geographically and temporally, spanning the Levant and Greater Syria from the end of the Early Bronze Age until the early Iron Age. Although the Southern Levant has been characterized as highly urbanized during the Middle Bronze Age, settlement pattern analysis suggests that it was fragmented into numerous polities, as documented subsequently in the Late Bronze Age Amarna Letters. In contrast, Levantine towns and villages shared a common religious tradition marked by ritual behaviors within clearly marked liminal spaces. These behaviors are readily recognizable archaeologically at Tell el-Hayyat, Jordan, where they are framed in temple enclosures by distinct architecturally-defined boundaries, and signaled by feasting on sheep and goat, and deposition of copper-alloy figurines, tools and metallurgical remains. These lines of material and architectural evidence, and the liminal behaviors they reflect, linked villages and towns in localized Levantine polities, as exemplified among a cluster of settlements in the northern Jordan Valley. Parallel sequences of four temples in antis at Tell el-Hayyat and nearby Pella (ancient Piḫilu in the Amarna Letters) developed in tandem throughmore »the Middle Bronze Age, suggesting that temple construction and rebuilding was coordinated between town and village communities. Further examples of temples in antis and patterns of material deposition and liminal behavior suggest that this temple form and its associated ritual tradition were spread throughout the Southern Levant as part of a much larger and longer-lived cultural tradition extending across Greater Syria, which has been characterized as a Middle Bronze Age cultural koinè . Thus, despite its fractious local political environment, Middle Bronze Age Levantine society was grounded in a remarkably broad cultural tradition marked by the sacred spaces and liminal behaviors associated with temples in antis .« less
  2. Jull, A.J.T. (Ed.)
    ABSTRACT. We present two new Bayesian 14C models using IntCal20 that incorporate 17 new calibrated AMS ages for Early Bronze IV Tell Abu en-Ni‘aj and Middle Bronze Age Tell el-Hayyat, located in the northern Jordan Valley, Jordan. These freshly augmented suites of carbonized seed dates now include 25 AMS dates from Tell Abu en-Ni‘aj and 31 AMS dates from Tell el-Hayyat. The modeled founding date for Tell Abu en-Ni‘aj strengthens an emerging high chronology for Early Bronze IV starting by 2500 cal BC, while the end of its habitation by 2200 cal BC may exemplify a regional pattern of increasingly pervasive abandonment among late Early Bronze IV settlements in the Southern Levant. In turn, our modeled date for the Early Bronze IV/Middle Bronze Age transition at Tell el-Hayyat around 1900 cal BC pushes this interface about a century later than surmised traditionally, and its abandonment in Middle Bronze III marks an unexpectedly early end date before 1600 cal BC. These inferences, which coordinate Bayesian AMS models and typological ceramic sequences for Tell Abu en-Ni‘aj and Tell el-Hayyat, contribute to an ongoing revision of Early and Middle Bronze Age Levantine chronologies and uncoupling of their attendant interpretive links between the Southernmore »Levant and Egypt.« less
  3. Translating information between the domains of systematics and conservation requires novel information management designs. Such designs should improve interactions across the trading zone between the domains, herein understood as the model according to which knowledge and uncertainty are productively translated in both directions (cf. Collins et al. 2019). Two commonly held attitudes stand in the way of designing a well-functioning systematics-to-conservation trading zone. On one side, there are calls to unify the knowledge signal produced by systematics, underpinned by the argument that such unification is a necessary precondition for conservation policy to be reliably expressed and enacted (e.g., Garnett et al. 2020). As a matter of legal scholarship, the argument for systematic unity by legislative necessity is principally false (Weiss 2003, MacNeil 2009, Chromá 2011), but perhaps effective enough as a strategy to win over audiences unsure about robust law-making practices in light of variable and uncertain knowledge. On the other side, there is an attitude that conservation cannot ever restrict the academic freedom of systematics as a scientific discipline (e.g., Raposo et al. 2017). This otherwise sound argument misses the mark in the context of designing a productive trading zone with conservation. The central interactional challenge is not whethermore »the systematic knowledge can vary at a given time and/or evolve over time, but whether these signal dynamics are tractable in ways that actors can translate into robust maxims for conservation. Redesigning the trading zone should rest on the (historically validated) projection that systematics will continue to attract generations of inspired, productive researchers and broad-based societal support, frequently leading to protracted conflicts and dramatic shifts in how practioners in the field organize and identify organismal lineages subject to conservation. This confident outlook for systematics' future, in turn, should refocus the challenge of designing the trading zone as one of building better information services to model the concurrent conflicts and longer-term evolution of systematic knowledge. It would seem unreasonable to expect the International Union for Conservation of Nature (IUCN) Red List Index to develop better data science models for the dynamics of systematic knowledge (cf. Hoffmann et al. 2011) than are operational in the most reputable information systems designed and used by domain experts (Burgin et al. 2018). The reasonable challenge from conservation to systematics is not to stop being a science but to be a better data science. In this paper, we will review advances in biodiversity data science in relation to representing and reasoning over changes in systematic knowledge with computational logic, i.e., modeling systematic intelligence (Franz et al. 2016). We stress-test this approach with a use case where rapid systematic signal change and high stakes for conservation action intersect, i.e., the Malagasy mouse lemurs ( Microcebus É. Geoffroy, 1834 sec. Schüßler et al. 2020), where the number of recognized species-level concepts has risen from 2 to 25 in the span of 38 years (1982–2020). As much as scientifically defensible, we extend our modeling approach to the level of individual published occurrence records, where the inability to do so sometimes reflects substandard practice but more importantly reveals systemic inadequacies in biodiversity data science or informational modeling. In the absence of shared, sound theoretical foundations to assess taxonomic congruence or incongruence across treatments, and in the absence of biodiversity data platforms capable of propagating logic-enabled, scalable occurrence-to-concept identification events to produce alternative and succeeding distribution maps, there is no robust way to provide a knowledge signal from systematics to conservation that is both consistent in its syntax and acccurate in its semantics, in the sense of accurately reflecting the variation and uncertainty that exists across multiple systematic perspectives. Translating this diagnosis into new designs for the trading zone is only one "half" of the solution, i.e., a technical advancement that then would need to be socially endorsed and incentivized by systematic and conservation communities motivated to elevate their collaborative interactions and trade robustly in inherently variable and uncertain information.« less
  4. Abstract The Placerias /Downs’ Quarry complex in eastern Arizona, USA, is the most diverse Upper Triassic vertebrate locality known. We report a new short-faced archosauriform, Syntomiprosopus sucherorum gen. et sp. nov., represented by four incomplete mandibles, that expands that diversity with a morphology unique among Late Triassic archosauriforms. The most distinctive feature of Syntomiprosopus gen. nov. is its anteroposteriorly short, robust mandible with 3–4 anterior, a larger caniniform, and 1–3 “postcanine” alveoli. The size and shape of the alveoli and the preserved tips of replacement teeth preclude assignment to any taxon known only from teeth. Additional autapomorphies of S. sucherorum gen. et sp. nov. include a large fossa associated with the mandibular fenestra, an interdigitating suture of the surangular with the dentary, fine texture ornamenting the medial surface of the splenial, and a surangular ridge that completes a 90° arc. The external surfaces of the mandibles bear shallow, densely packed, irregular, fine pits and narrow, arcuate grooves. This combination of character states allows an archosauriform assignment; however, an associated and similarly sized braincase indicates that Syntomiprosopus n. gen. may represent previously unsampled disparity in early-diverging crocodylomorphs. The Placerias Quarry is Adamanian (Norian, maximum depositional age ~219 Ma), and this specimenmore »appears to be an early example of shortening of the skull, which occurs later in diverse archosaur lineages, including the Late Cretaceous crocodyliform Simosuchus . This is another case where Triassic archosauriforms occupied morphospace converged upon by other archosaurs later in the Mesozoic and further demonstrates that even well-sampled localities can yield new taxa.« less
  5. Abstract Tectonic interpretation of the central Sierra Nevada—whether the crest of the Sierra Nevada (California, USA) was uplifted in the late Cenozoic or whether the range has undergone continuous down-wearing since the Late Cretaceous—is controversial, since there is no obvious tectonic explanation for renewed uplift. The strongest direct evidence for late Cenozoic uplift of the central Sierra Nevada comes from study of the Trachyandesite of Kennedy Table, which followed the course of the Miocene San Joaquin River but has a steeper gradient than the modern river. Early workers attributed this steeper gradient to tilting of the Sierra Nevada block since the late Miocene, resulting in 2 km of range-crest uplift. However, this interpretation has been contested on grounds that the Miocene river gradient had to be assumed and that the Sierran Batholith could have warped during tilting, thus failing to uplift the range crest. The objective of this study was to obtain quantitative data that test these criticisms. The Trachyandesite of Kennedy Table is a chain of 33 remnants of a single lava flow as thick as 65 m, preserved for 21 km from Squaw Leap to Little Dry Creek, close to the modern San Joaquin River in the foothillsmore »of the Sierra Nevada. Several remnants lie on fluvial gravel of the late Miocene San Joaquin River. Early workers speculated that the lava concealed its own (unrecognized) vent, but in 2011, we identified the vent on the Middle Fork of the San Joaquin River, 13.5 km south of Deadman Pass and 70 km northeast of Kennedy Table. The vent complex intrudes Cretaceous granite, has 285 m relief, and is an intricately jointed intrusion that grades up into a glassy lava flow. Composition (58% SiO2) and 40Ar/39Ar age (9.3 Ma) are identical at the vent and downstream. Basal elevations of remnants were recorded, and the present-day basal gradients of several were adjusted for apparent dip and projected along a vertical plane at 220° (the estimated tilt azimuth). The basal gradients are far steeper than that of the modern river, but they differ slightly from reach to reach and are thus inconsistent measures of the post-Miocene tilt. Likewise, relief eroded atop most remnants renders modeling of upper surfaces suspect. At Little Dry Creek, however, a chain of nine remnants rests on fluvial floodplain sand and gravel; this chain trends 230°, and its smooth basal contact now dips 1.36° (adjusted at 220°). Projection of this dip 89 km from the 207 m base of the most distal remnant at Little Dry Creek to the vent intrusion falls far below the 2760 m intrusion-to-lava-flow transition near the Sierran crest, showing that the Sierran block has not undergone pronounced convex warping. Using elevation data on paleoriver meanders preserved by the lava flow, we show that the paleogradient has a cosine dependence on meander-section azimuth, indicating tilting. Subtraction of 1.07° of dip restores the data to an azimuth-independent configuration, indicating total tilting since 9.3 Ma of 1.07° and an original large-scale gradient of 0.46°, similar to the published value of 0.33° at Squaw Leap, but larger than the previously obtained value of 0.057° at Little Dry Creek. Subtraction of those Miocene estimates from the observable 1.643° tilt along the section from Little Dry Creek to the vent yields vent uplift of 2464 m (for 0.057°), 1835 m (for 0.46°), and 2040 m (for 0.33°). Confirmation of earlier assumptions regarding Miocene river gradient and block rigidity greatly strengthens the case for ~2 km of late Cenozoic uplift of the central Sierra Nevada crest.« less