skip to main content


Title: A reinforcement learning approach for user-optimal parking searching strategy on a network exploiting network topology
This paper investigates the idea of introducing learning algorithms into parking guidance and information systems that employ a central server, in order to provide estimated optimal parking searching strategies to travelers. The parking searching process on a network with uncertain parking availability can naturally be modeled as a Markov Decision Process (MDP). Such an MDP with full information can easily be solved by dynamic programming approaches. However, the probabilities of finding parking are difficult to define and calculate, even with accurate occupancy data. Learning algorithms are suitable for addressing this issue. The central server collects data from numerous travelers’ parking search experiences in the same area within a time window, computes approximated optimal parking searching strategy using a learning algorithm, and distributes the strategy to travelers. We propose an algorithm based on Q-learning, where the topology of the underlying transportation network is incorporated. This modification allows us to reduce the size of the problem dramatically, and thus the amount of data required to learn the optimal strategy. Numerical experiments conducted on a toy network show that the proposed learning algorithm outperforms the nearest-node greedy search strategy and the original Q-learning algorithm. Sensitivity analysis regarding the desired amount of training data is also performed.  more » « less
Award ID(s):
1643175 1363244
NSF-PAR ID:
10107397
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2019 Transportation Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Searching for parking has been a problem faced by many drivers, especially in urban areas. With an increasing public demand for parking information and services, as well as the proliferation of advanced smartphones, a range of smartphone-based parking management services began to emerge. Funded by the National Science Foundation, our research aims to explore the potential of smartphone-based parking management services as a solution to parking problems, to deepen our understandings of travelers’ parking behaviors, and to further advance the analytical foundations and methodologies for modeling and assessing parking solutions. This paper summarizes progress and results from our research projects on smartphone-based parking management, including parking availability information prediction, parking searching strategy, the development of a mobile parking application, and our next steps to learn and discover new knowledge from its deployment. To predict future parking occupancy, we proposed a practical framework that integrates machine-learning techniques with a model-based core approach that explicitly models the stochastic parking process. The framework is able to predict future parking occupancy from historical occupancy data alone, and can handle complex arrival and departure patterns in real-world case studies, including special event. With the predicted probabilistic availability information, a cost-minimizing parking searching strategy is developed. The parking searching problem for an individual user is a stochastic Markov decision process and is formalized as a dynamic programming problem. The cost-minimizing parking searching strategy is solved by value iteration. Our simulated experiments showed that cost-minimizing strategy has the lowest expected cost but tends to direct a user to visit more parking facilities compared with two greedy strategies. Currently, we are working on implementing the predictive framework and the searching algorithm in a mobile phone application. We are working closely with Arizona State University (ASU) Parking and Transit Services to implement a three-stage pilot deployment of the prototype application around the ASU main campus. In the first stage, our application will provide real-time information and we will incorporate availability prediction and searching guidance in the second and third stages. Once the mobile application is deployed, it will provide unique opportunities to collect data on parking search behaviors, discover emerging scenarios of smartphone-based parking management services, and assess the impacts of such systems. 
    more » « less
  2. Searching for parking has been a problem faced by many drivers, especially in urban areas. With an increasing public demand for parking information and services, as well as the proliferation of advanced smartphones, a range of smartphone-based parking management services began to emerge. Funded by the National Science Foundation, our research aims to explore the potential of smartphone-based parking management services as a solution to parking problems, to deepen our understandings of travelers’ parking behaviors, and to further advance the analytical foundations and methodologies for modeling and assessing parking solutions. This paper summarizes progress and results from our research projects on smartphone-based parking management, including parking availability information prediction, parking searching strategy, the development of a mobile parking application, and our next steps to learn and discover new knowledge from its deployment. To predict future parking occupancy, we proposed a practical framework that integrates machine-learning techniques with a model-based core approach that explicitly models the stochastic parking process. The framework is able to predict future parking occupancy from historical occupancy data alone, and can handle complex arrival and departure patterns in real-world case studies, including special event. With the predicted probabilistic availability information, a cost-minimizing parking searching strategy is developed. The parking searching problem for an individual user is a stochastic Markov decision process and is formalized as a dynamic programming problem. The cost-minimizing parking searching strategy is solved by value iteration. Our simulated experiments showed that cost-minimizing strategy has the lowest expected cost but tends to direct a user to visit more parking facilities compared with two greedy strategies. Currently, we are working on implementing the predictive framework and the searching algorithm in a mobile phone application. We are working closely with Arizona State University (ASU) Parking and Transit Services to implement a three-stage pilot deployment of the prototype application around the ASU main campus. In the first stage, our application will provide real-time information and we will incorporate availability prediction and searching guidance in the second and third stages. Once the mobile application is deployed, it will provide unique opportunities to collect data on parking search behaviors, discover emerging scenarios of smartphone-based parking management services, and assess the impacts of such systems. 
    more » « less
  3. Traffic systems exhibit supply-side uncertainty which is alleviated through real-time information. This article explores subscription models for a private agency sharing data at a fixed rate. A multiclass strategy-based equilibrium model is developed for two classes of subscribed and unsubscribed travelers, whose optimal strategy given the link-state costs is modeled as a Markov decision process (MDP) and a partially-observable MDP, respectively. A utility-based subscription choice model is formulated to study the impacts of subscription rates on the percentage of travelers choosing to subscribe. Solutions to the fixed-point formulation are determined using iterative algorithms. The proposed subscription model can be used for designing optimal subscription rates in various settings where real-time information can be a valuable routing tool such as express lanes, parking systems, roadside delivery, and routing of vulnerable road users. 
    more » « less
  4. Traffic systems exhibit supply-side uncertainty which is alleviated through real-time information. This article explores subscription models for a private agency sharing data at a fixed rate. A multiclass strategy-based equilibrium model is developed for two classes of subscribed and unsubscribed travelers, whose optimal strategy given the link-state costs is modeled as a Markov decision process (MDP) and a partially-observable MDP, respectively. A utility-based subscription choice model is formulated to study the impacts of subscription rates on the percentage of travelers choosing to subscribe. Solutions to the fixed-point formulation are determined using iterative algorithms. The proposed subscription model can be used for designing optimal subscription rates in various settings where real-time information can be a valuable routing tool such as express lanes, parking systems, roadside delivery, and routing of vulnerable road users. 
    more » « less
  5. A planned special event (PSE), such as a sports game or a concert, can greatly affect the normal operations of a transportation system. To facilitate traffic, the road network is usually reconfigured, which could include road closures, reversed lanes, and limited access to parking facilities. For recurring PSEs, event-goers are often provided with recommended routes to designated parking areas in advance. Such network reconfiguration and route and parking recommendations are, however, often ad hoc in practice. This paper focuses on the PSE traffic planning problem. We propose to simultaneously consider parking, ridesharing, and network configuration. The problem is formulated as an optimization problem with integer decision variables. We developed a flow-based traffic simulation tool that is able to incorporate parking and lane changing (which cannot be ignored around ridesharing drop-off locations) to evaluate the objective function. We also developed effective and efficient heuristic solution algorithms. The models and algorithms are tested using the real network and traffic data from Super Bowl XLIX in 2015. The results show that our methods and approaches are able to produce an effective comprehensive traffic plan with reasonable computation time. For the Super Bowl XLIX case study, the resulting optimal plan is able to save 39.6% of the total vehicle-hours associated with default network configurations. Sensitivity analysis has also been conducted with respect to the compliance rate of travelers following recommended routes. It is found that the resulting near-optimal PSE traffic plans are able to tolerate some uncertainty in the compliance rate.

     
    more » « less