skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 2D Au-Coated Resonant MEMS Scanner for NIR Fluorescence Intraoperative Confocal Microscope
The electrostatic MEMS scanner plays an important role in the miniaturization of the microscopic imaging system. We have developed a new two-dimensional (2D) parametrically-resonant MEMS scanner with patterned Au coating (>90% reflectivity at an NIR 785-nm wavelength), for a near-infrared (NIR) fluorescence intraoperative confocal microscopic imaging system with a compact form factor. A silicon-on-insulator (SOI)-wafer based dicing-free microfabrication process has been developed for mass-production with high yield. Based on an in-plane comb-drive configuration, the resonant MEMS scanner performs 2D Lissajous pattern scanning with a large mechanical scanning angle (MSA, ±4°) on each axis at low driving voltage (36 V). A large field-of-view (FOV) has been achieved by using a post-objective scanning architecture of the confocal microscope. We have integrated the new MEMS scanner into a custom-made NIR fluorescence intraoperative confocal microscope with an outer diameter of 5.5 mm at its distal-end. Axial scanning has been achieved by using a piezoelectric actuator-based driving mechanism. We have successfully demonstrated ex vivo 2D imaging on human tissue specimens with up to five frames/s. The 2D resonant MEMS scanner can potentially be utilized for many applications, including multiphoton microendoscopy and wide-field endoscopy.  more » « less
Award ID(s):
1808436
PAR ID:
10107456
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Micromachines
Volume:
10
Issue:
5
ISSN:
2072-666X
Page Range / eLocation ID:
295
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We have developed a novel microscopic analysis system that combines the functions of light-sheet fluorescence microscopy (LSM) and dynamic mechanical analysis (DMA). We have integrated the three uniquely designed components of (i) a MEMS dynamic compression device with a μ-force sensor, (ii) a high-speed 3D light-sheet scanner and an imager, and (iii) a custom-programmed image-based 3D modeling algorithm. Here, we demonstrate spatially-resolved mechanical characterization of viscoelastic materials under high-resolution 3D fluorescence microscopy for the first time. 
    more » « less
  2. Confocal microscopy is a standard approach for obtaining volumetric images of a sample with high axial and lateral resolution, especially when dealing with scattering samples. Unfortunately, a confocal microscope is quite expensive compared to traditional microscopes. In addition, the point scanning in confocal microscopy leads to slow imaging speed and photobleaching due to the high dose of laser energy. In this paper, we demonstrate how the advances in machine learning can be exploited to teach a traditional wide-field microscope, one that’s available in every lab, into producing 3D volumetric images like a confocal microscope. The key idea is to obtain multiple images with different focus settings using a wide-field microscope and use a 3D generative adversarial network (GAN) based neural network to learn the mapping between the blurry low-contrast image stacks obtained using a wide-field microscope and the sharp, high-contrast image stacks obtained using a confocal microscope. After training the network with widefield-confocal stack pairs, the network can reliably and accurately reconstruct 3D volumetric images that rival confocal images in terms of its lateral resolution, z-sectioning and image contrast. Our experimental results demonstrate generalization ability to handle unseen data, stability in the reconstruction results, high spatial resolution even when imaging thick (∼40 microns) highly-scattering samples. We believe that such learning-based microscopes have the potential to bring confocal imaging quality to every lab that has a wide-field microscope. 
    more » « less
  3. In this Letter a novel, to our knowledge, approach for near-infrared (NIR) fluorescence portable confocal microscopy is introduced, aiming to enhance fluorescence imaging of biological samples in the NIR-II window. By integrating a superconducting nanowire single-photon detector (SNSPD) into a confocal microscopy, we have significantly leveraged the detection efficiency of the NIR-II fluorescence signal from indocyanine green (ICG), an FDA-approved dye known for its NIR-II fluorescence capabilities. The SNSPD, characterized by its extremely low dark count rate and optimized NIR system detection efficiency, enables the excitation of ICG with 1 mW and the capture of low-light fluorescence signals from deep regions (up to 512 µm). Consequently, our technique was able to produce high-resolution images of bio samples with a superior signal-to-noise ratio, making a substantial advancement in the field of fluorescence microscopy and offering a promising opportunity for future clinical study. 
    more » « less
  4. Intraoperative imaging of slide-free specimens is crucial for oncology surgeries, allowing surgeons to quickly identify tumor margins for precise surgical guidance. While high-resolution ultraviolet photoacoustic microscopy has been demonstrated for slide-free histology, the imaging speed is insufficient, due to the low laser repetition rate and the limited depth of field. To address these challenges, we present parallel ultraviolet photoacoustic microscopy (PUV-PAM) with simultaneous scanning of eight optical foci to acquire histology-like images of slide-free fresh specimens, improving the ultraviolet PAM imaging speed limited by low laser repetition rates. The PUV-PAM has achieved an imaging speed of 0.4 square millimeters per second (i.e., 4.2 minutes per square centimeter) at 1.3-micrometer resolution using a 50-kilohertz laser. In addition, we demonstrated the PUV-PAM with eight needle-shaped beams for an extended depth of field, allowing fast imaging of slide-free tissues with irregular surfaces. We believe that the PUV-PAM approach will enable rapid intraoperative photoacoustic histology and provide prospects for ultrafast optical-resolution PAM. 
    more » « less
  5. Abstract Traditional deep fluorescence imaging has primarily focused on red‐shifting imaging wavelengths into the near‐infrared (NIR) windows or implementation of multi‐photon excitation approaches. Here, the advantages of NIR and multiphoton imaging are combined by developing a dual‐infrared two‐photon microscope that enables high‐resolution deep imaging in biological tissues. This study first computationally identifies that photon absorption, as opposed to scattering, is the primary contributor to signal attenuation. A NIR two‐photon microscope is constructed next with a 1640 nm femtosecond pulsed laser and a NIR PMT detector to image biological tissues labeled with fluorescent single‐walled carbon nanotubes (SWNTs). Spatial imaging resolutions are achieved close to the Abbe resolution limit and eliminate blur and background autofluorescence of biomolecules, 300 µm deep into brain slices and through the full 120 µm thickness of aNicotiana benthamianaleaf. NIR‐II two‐photon microscopy can also measure tissue heterogeneity by quantifying how much the fluorescence power law function varies across tissues, a feature this study exploits to distinguish Huntington's Disease afflicted mouse brain tissues from wildtype. These results suggest dual‐infrared two‐photon microscopy can accomplish in‐tissue structural imaging and biochemical sensing with a minimal background, and with high spatial resolution, in optically opaque or highly autofluorescent biological tissues. 
    more » « less