skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Disk Substructures at High Angular Resolution Project (DSHARP). X. Multiple Rings, a Misaligned Inner Disk, and a Bright Arc in the Disk around the T Tauri star HD 143006
Award ID(s):
1715719
PAR ID:
10107485
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
869
Issue:
2
ISSN:
2041-8213
Page Range / eLocation ID:
L50
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Sun is not quite a perfect sphere, and its oblateness, thought to be induced through its rotation, has been measured using optical observations of its radius. Its gravitational quadrupole moment can then be deduced using solar models, or through helioseismology, and it can also be determined from measurements of its gravitational effects on Mercury’s orbit. The various assessments do not appear to agree, with the most complete and precise orbital assessments being in slight excess of other determinations. This may speak to the existence of a nonluminous disk or ring, where we also note evidence for a circumsolar dust ring within Mercury’s orbit from the Solar TErrestrial RElations Observatory (STEREO) mission. Historically, too, a protoplanetary disk may have been key to reconciling the Sun’s metallicity with its neutrino yield. The distribution of the nonluminous mass within Mercury’s orbit can modify the relative size of the optical and orbital quadrupole moments in different ways. We develop how we can use these findings to limit the mass of a dark disk, ring, or halo in the immediate vicinity of the Sun, and we note how future observational studies of the inner Solar System can not only refine these constraints but can also help to identify and to assess the mass of its dark-matter component. Published by the American Physical Society2025 
    more » « less
  2. null (Ed.)