Computing single-source shortest paths (SSSP) is one of the fundamental problems in graph theory. There are many applications of SSSP including finding routes in GPS systems and finding high centrality vertices for effective vaccination. In this paper, we focus on calculating SSSP on big dynamic graphs, which change with time. We propose a novel distributed computing approach, SSSPIncJoint, to update SSSP on big dynamic graphs using GraphX. Our approach considerably speeds up the recomputation of the SSSP tree by reducing the number of map-reduce operations required for implementing SSSP in the gather-apply- scatter programming model used by GraphX.
more »
« less
Single-Source Shortest Path Tree for Big Dynamic Graphs
Computing single-source shortest paths (SSSP) is one of the fundamental problems in graph theory. There are many applications of SSSP including finding routes in GPS systems and finding high centrality vertices for effective vaccination. In this paper, we focus on calculating SSSP on big dynamic graphs, which change with time. We propose a novel distributed computing approach, SSSPIncJoint, to update SSSP on big dynamic graphs using GraphX. Our approach considerably speeds up the recomputation of the SSSP tree by reducing the number of map-reduce operations required for implementing SSSP in the gather-apply- scatter programming model used by GraphX.
more »
« less
- Award ID(s):
- 1916084
- PAR ID:
- 10107625
- Date Published:
- Journal Name:
- 2018 IEEE International Conference on Big Data (Workshop on Big Graphs)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Computing the single-source shortest path (SSSP) is one of the fundamental graph algorithms, and is used in many applications. Here, we focus on computing SSSP on large dynamic graphs, i.e. graphs whose structure evolves with time. We posit that instead of recomputing the SSSP for each set of changes on the dynamic graphs, it is more efficient to update the results based only on the region of change. To this end, we present a novel two-step shared-memory algorithm for updating SSSP on weighted large-scale graphs. The key idea of our algorithm is to identify changes, such as vertex/edge addition and deletion, that affect the shortest path computations and update only the parts of the graphs affected by the change. We provide the proof of correctness of our proposed algorithm. Our experiments on real and synthetic networks demonstrate that our algorithm is as much as 4X faster compared to computing SSSP with Galois, a state-of-the-art parallel graph analysis software for shared memory architectures. We also demonstrate how increasing the asynchrony can lead to even faster updates. To the best of our knowledge, this is one of the first practical parallel algorithms for updating networks on shared-memory systems, that is also scalable to large networks.more » « less
-
Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)This paper presents parallel, distributed, and quantum algorithms for single-source shortest paths when edges can have negative integer weights (negative-weight SSSP). We show a framework that reduces negative-weight SSSP in all these settings to n^{o(1)} calls to any SSSP algorithm that works on inputs with non-negative integer edge weights (non-negative-weight SSSP) with a virtual source. More specifically, for a directed graph with m edges, n vertices, undirected hop-diameter D, and polynomially bounded integer edge weights, we show randomized algorithms for negative-weight SSSP with - W_{SSSP}(m,n)n^{o(1)} work and S_{SSSP}(m,n)n^{o(1)} span, given access to a non-negative-weight SSSP algorithm with W_{SSSP}(m,n) work and S_{SSSP}(m,n) span in the parallel model, and - T_{SSSP}(n,D)n^{o(1)} rounds, given access to a non-negative-weight SSSP algorithm that takes T_{SSSP}(n,D) rounds in CONGEST, and - Q_{SSSP}(m,n)n^{o(1)} quantum edge queries, given access to a non-negative-weight SSSP algorithm that takes Q_{SSSP}(m,n) queries in the quantum edge query model. This work builds off the recent result of Bernstein, Nanongkai, Wulff-Nilsen [Bernstein et al., 2022], which gives a near-linear time algorithm for negative-weight SSSP in the sequential setting. Using current state-of-the-art non-negative-weight SSSP algorithms yields randomized algorithms for negative-weight SSSP with - m^{1+o(1)} work and n^{1/2+o(1)} span in the parallel model, and - (n^{2/5}D^{2/5} + √n + D)n^{o(1)} rounds in CONGEST, and - m^{1/2}n^{1/2+o(1)} quantum queries to the adjacency list or n^{1.5+o(1)} quantum queries to the adjacency matrix. Up to a n^{o(1)} factor, the parallel and distributed results match the current best upper bounds for reachability [Jambulapati et al., 2019; Cao et al., 2021]. Consequently, any improvement to negative-weight SSSP in these models beyond the n^{o(1)} factor necessitates an improvement to the current best bounds for reachability. The quantum result matches the lower bound up to an n^{o(1)} factor [Aija Berzina et al., 2004]. Our main technical contribution is an efficient reduction from computing a low-diameter decomposition (LDD) of directed graphs to computations of non-negative-weight SSSP with a virtual source. Efficiently computing an LDD has heretofore only been known for undirected graphs in both the parallel and distributed models, and been rather unstudied in quantum models. The directed LDD is a crucial step of the sequential algorithm in [Bernstein et al., 2022], and we think that its applications to other problems in parallel and distributed models are far from being exhausted. Other ingredients of our results include altering the recursion structure of the scaling algorithm in [Bernstein et al., 2022] to surmount difficulties that arise in these models, and also an efficient reduction from computing strongly connected components to computations of SSSP with a virtual source in CONGEST. The latter result answers a question posed in [Bernstein and Nanongkai, 2019] in the negative.more » « less
-
The maximum bipartite matching problem is among the most fundamental and well-studied problems in combinatorial optimization. A beautiful and celebrated combinatorial algorithm of Hopcroft and Karp [26] shows that maximum bipartite matching can be solved in O(m√n) time on a graph with n vertices and m edges. For the case of very dense graphs, a different approach based on fast matrix multiplication was subsequently developed [27, 39], that achieves a running time of O(n2.371). For the next several decades, these results represented the fastest known algorithms for the problem until in 2013, a ground-breaking work of Madry [36] gave a significantly faster algorithm for sparse graphs. Subsequently, a sequence of works developed increasingly faster algorithms for solving maximum bipartite matching, and more generally directed maximum flow, culminating in a spectacular recent breakthrough [9] that gives an m1+o(1) time algorithm for maximum bipartite matching (and more generally, for min cost flows). These more recent developments collectively represented a departure from earlier combinatorial approaches: they all utilized continuous techniques based on interior-point methods for solving linear programs. This raises a natural question: are continuous techniques essential to obtaining fast algorithms for the bipartite matching problem? Our work makes progress on this question by presenting a new, purely combinatorial algorithm for bipartite matching, that, on moderately dense graphs outperforms both Hopcroft- Karp and the fast matrix multiplication based algorithms. Similar to the classical algorithms for bipartite matching, our approach is based on iteratively augmenting a current matching using augmenting paths in the (directed) residual flow network. A common method for designing fast algorithms for directed flow problems is via the multiplicative weights update (MWU) framework, that effectively reduces the flow problem to decremental single-source shortest paths (SSSP) in directed graphs. Our main observation is that a slight modification of this reduction results in a special case of SSSP that appears significantly easier than general decremental directed SSSP. Our main technical contribution is an efficient algorithm for this special case of SSSP, that outperforms the current state of the art algorithms for general decremental SSSP with adaptive adversary, leading to a deterministic algorithm for bipartite matching, whose running time is Õ(m1/3n5/3). This new algorithm thus starts to outperform the Hopcroft-Karp algorithm in graphs with m = ω(n7/4), and it also outperforms the fast matrix multiplication based algorithms on dense graphs. We believe that this framework for obtaining faster combinatorial algorithms for bipartite matching by exploiting the special properties of the resulting decremental SSSP instances is one of the main conceptual contributions of our work that we hope paves the way for even faster combinatorial algorithms for bipartite matching. Finally, using a standard reduction from the maximum vertex-capacitated s-t flow problem in directed graphs to maximum bipartite matching, we also obtain an O(m1/3n5/3) time deterministic algorithm for maximum vertex-capacitated s-t flow when all vertex capacities are identical.more » « less
-
We present a randomized algorithm that computes single-source shortest paths (SSSP) in O(mlog8(n)logW) time when edge weights are integral and can be negative. This essentially resolves the classic negative-weight SSSP problem. The previous bounds are O~((m+n1.5)logW) [BLNPSSSW FOCS'20] and m4/3+o(1)logW [AMV FOCS'20]. Near-linear time algorithms were known previously only for the special case of planar directed graphs [Fakcharoenphol and Rao FOCS'01]. In contrast to all recent developments that rely on sophisticated continuous optimization methods and dynamic algorithms, our algorithm is simple: it requires only a simple graph decomposition and elementary combinatorial tools. In fact, ours is the first combinatorial algorithm for negative-weight SSSP to break through the classic O~(mn−−√logW) bound from over three decades ago [Gabow and Tarjan SICOMP'89].more » « less
An official website of the United States government

