skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pedagogical Content Knowledge for Teaching Inclusive Design
Inclusive design is important in today's software industry, but there is little research about how to teach it. In collaboration with 9 teacher-researchers across 8 U.S. universities and more than 400 computer and information science students, we embarked upon an Action Research investigation to gather insights into the pedagogical content knowledge (PCK) that teachers need to teach a particular inclusive design method called GenderMag. Analysis of the teachers' observations and experiences, the materials they used, direct observations of students' behaviors, and multiple data on the students' own reflections on their learning revealed 11 components of inclusive design PCK. These include strategies for anticipating and addressing resistance to the topic of inclusion, strategies for modeling and scaffolding perspective taking, and strategies for tailoring instruction to students' prior beliefs and biases.  more » « less
Award ID(s):
1735123
PAR ID:
10107741
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Pedagogical Content Knowledge for Teaching Inclusive Design
Page Range / eLocation ID:
69 to 77
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pedagogical content knowledge (PCK) is specialized knowledge necessary to teach a subject. PCK integrates subject-matter content knowledge with knowledge of students and of teaching strategies so that teachers can perform the daily tasks of teaching. Studies in mathematics education have found correlations between measures of PCK and student learning. Finding robust, scalable ways for developing and measuring computer science (CS) teachers’ PCK is particularly important in CS education in the United States, given the lack of formal CS teacher preparation programs and certifications. However, measuring pedagogical content knowledge is a challenge for all subject areas. It can be difficult to write assessment items that elicit the different aspects of PCK and there are often multiple appropriate pedagogical choices in any given teaching scenario. In this paper, we describe a framework and pilot data from a questionnaire intended to elicit PCK from teachers of high school introductory CS courses and we propose future directions for this work. 
    more » « less
  2. null (Ed.)
    This case study addresses the pedagogical challenges teachers face in incorporating elements of socioscientific issues (SSI) when planning science and mathematics lessons. In order to effectively plan and teach SSI lessons, teachers must develop pedagogical content knowledge (PCK) specific to unpacking elements of SSI such as identifying an issue that is debatable and relevant to students’ lives, employing reflective scientific skepticism, and evaluating multiple perspectives. This study was guided by the following research questions: 1) In what ways, if any, did teachers’ knowledge and instructional design of SSI change throughout the intensive series of workshops? 2) What areas of SSI required additional support? To answer our research questions, we analyzed changes in lesson plans from 29 teachers, mostly science and secondary, over the course of three intensive workshops as part of the Integrating STEM in Everyday Life Conference Series. Over the five month period, teachers worked in groups and with mentors to design and implement SSI lessons. Our findings show that teachers demonstrated positive changes in all SSI elements over the course of the workshops. However, deeper analysis reveals that teachers struggled to balance the social and scientific aspects of SSI. Moreover, our analysis suggests that teachers did not focus on the discursive nature of SSI in their lesson plans. Implications of our study include ways in which professional development programs can cultivate teachers’ PCK of SSI in order to better support them in planning and implementing SSI lessons. 
    more » « less
  3. Sacristán, A.I. (Ed.)
    Multiplication and division are vital topics in upper level elementary school. A teacher’s pedagogical content knowledge (PCK) influences both instruction and students’ learning. However, there is currently little research examining teachers’ PCK within this domain, particularly regarding professional education of future teachers. To help address this need, the present paper presents an initial validity argument for a survey of preservice teacher’s PCK for multiplication and division. 
    more » « less
  4. Pre-college engineering teachers bring unique backgrounds to their teaching practice. Many engineering teachers follow a non-traditional route to teaching engineering, often coming to engineering from teaching other subjects or from careers in other fields. Among the many variations influencing engineering teaching practices is pedagogical content knowledge (PCK), defined as the “the knowledge of, reasoning behind, and enactment of the teaching of particular topics in a particular way with particular students for particular reasons for enhanced student outcomes [1]”. This multiple case study explores the PCK of five middle school engineering teachers implementing the same middle school engineering curriculum, STEM-ID. The 18- week STEM-ID curriculum engages students in contextualized challenges that incorporate foundational mathematics and science practices and advanced manufacturing tools such as computer aided design (CAD) and 3D printing, while introducing engineering concepts like pneumatics, aeronautics, and robotics. Drawing on observation and interview data collected over the course of two semester-long implementations of STEM-ID, the study addresses the research question: What variations in PCK are evident among engineering teachers with different professional backgrounds and levels of experience? Five teachers were purposively selected from a larger group of teachers implementing the curriculum because they represent a range of professional backgrounds: one veteran engineering teacher, one former Math teacher, one former Science teacher, one former English/Language Arts teacher, and one novice teacher with a background in the software industry. The study utilizes the Refined Consensus Model of PCK to investigate connections between teacher backgrounds, personal PCK (pPCK), the personalized professional knowledge held by teachers, and enacted PCK (ePCK), the knowledge teachers draw on to engage in pedagogical reasoning while planning, teaching, and reflecting on their practice. Observation, interview, and survey data were triangulated to develop narrative case summaries describing each teacher’s PCK, which were then subjected to cross-case analysis to identify patterns and themes across teachers. Findings describe how teachers’ backgrounds translated into diverse forms of pPCK that informed the pedagogical moves and decisions teachers made as they implemented the curriculum (ePCK). Regardless of the previous subject taught (math, science, or ELA), teachers routinely drew upon their pPCK in other subjects as they facilitated the engineering design process. Teachers with previous experience teaching math or science tended to be more likely than others to foreground the integration of math or science within the curriculum. Comparison of ePCK observed as teachers implemented the curriculum revealed that, in spite of having a more fully developed pPCK in teaching engineering, the veteran engineering teacher did not exhibit more sophisticated ePCK than novice engineering teachers. In addition to contributing to the field’s understanding of engineering teachers’ PCK, these findings hold implications for the recruitment, retention, and professional development of engineering teachers. 
    more » « less
  5. This article reports results from the implementation of a model of professional development (PD) to help K-5 teachers develop the knowledge and skills to teach Computer Science (CS) in classrooms of diverse students, including students with high-incidence disabilities. This article describes our Inclusive CS model of PD, how we made the PD model available to teachers during a pandemic and presents quantitative and qualitative results about the impact of the PD on teachers’ knowledge, comfort, and beliefs related to teaching computer science to students. Results indicate that the teachers’ knowledge, comfort, beliefs and perceptions about teaching CS to students with disabilities significantly improved. Teachers’ knowledge and understanding of Universal Design for Learning for supporting students in learning about CS also improved. 
    more » « less