skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrode-Skin Impedance Characterization of In-Ear Electrophysiology Accounting for Cerumen and Electrodermal Response
Conventional electroencephalography (EEG) requires placement of several electrode sensors on the scalp and, accompanied by lead wires and bulky instrumentation, makes for an uncomfortable experience. Recent efforts in miniaturization and system integration have enabled smaller systems, such as wearable, in-ear EEG devices that are gaining popularity for their unobtrusive form factor. Although in-ear EEG has been demonstrated in recent works, dynamics of the ear and ear canal that directly affect electrophysiological measurements have been largely ignored. Here, we present a quantitative analysis of electrode-skin impedance for dry-contact in-ear EEG that accounts for cerumen (earwax) and electrodermal (sweat gland) response. Custom fitted earmolds with 16 embedded electrodes were developed to map the skin conductance in the ear canal of 3 subjects. In the presence of cerumen, the measured average dry-contact impedance in the ear canal was 86% higher than canals removed of cerumen. Electrodermal activity was also found to play a role in electrode-skin impedance, showing up to 25% decrease in dry-contact impedance in response to tactile stimulation. The better understanding of the dynamics of in-ear conditions serves to improve consistency and accuracy of in-ear electrophysiology.  more » « less
Award ID(s):
1719130
PAR ID:
10107956
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International IEEE/EMBS Conference on Neural Engineering
ISSN:
1948-3554
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biopotential electrodes play an integral role within smart wearables and clothing in capturing vital signals like electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG). This study focuses on dry e-textile electrodes (E1–E6) and a laser-cut knit electrode (E7), to assess their impedance characteristics under varying contact forces and moisture conditions. Synthetic perspiration was applied using a moisture management tester and impedance was measured before and after exposure, followed by a 24 h controlled drying period. Concurrently, the signal-to-noise ratio (SNR) of the dry electrode was evaluated during ECG data collection on a healthy participant. Our findings revealed that, prior to moisture exposure, the impedance of electrodes E7, E5, and E2 was below 200 ohm, dropping to below 120 ohm post-exposure. Embroidered electrodes E6 and E4 exhibited an over 25% decrease in mean impedance after moisture exposure, indicating the impact of stitch design and moisture on impedance. Following the controlled drying, certain electrodes (E1, E2, E3, and E4) experienced an over 30% increase in mean impedance. Overall, knit electrode E7, and embroidered electrodes E2 and E6, demonstrated superior performance in terms of impedance, moisture retention, and ECG signal quality, revealing promising avenues for future biopotential electrode designs. 
    more » « less
  2. Abstract Objective.Non-invasive electroencephalograms (EEG)-based brain–computer interfaces (BCIs) play a crucial role in a diverse range of applications, including motor rehabilitation, assistive and communication technologies, holding potential promise to benefit users across various clinical spectrums. Effective integration of these applications into daily life requires systems that provide stable and reliable BCI control for extended periods. Our prior research introduced the AIRTrode, a self-adhesive (A), injectable (I), and room-temperature (RT) spontaneously-crosslinked hydrogel electrode (AIRTrode). The AIRTrode has shown lower skin-contact impedance and greater stability than dry electrodes and, unlike wet gel electrodes, does not dry out after just a few hours, enhancing its suitability for long-term application. This study aims to demonstrate the efficacy of AIRTrodes in facilitating reliable, stable and long-term online EEG-based BCI operations.Approach.In this study, four healthy participants utilized AIRTrodes in two BCI control tasks–continuous and discrete–across two sessions separated by six hours. Throughout this duration, the AIRTrodes remained attached to the participants’ heads. In the continuous task, participants controlled the BCI through decoding of upper-limb motor imagery (MI). In the discrete task, the control was based on decoding of error-related potentials (ErrPs).Main Results.Using AIRTrodes, participants demonstrated consistently reliable online BCI performance across both sessions and tasks. The physiological signals captured during MI and ErrPs tasks were valid and remained stable over sessions. Lastly, both the BCI performances and physiological signals captured were comparable with those from freshly applied, research-grade wet gel electrodes, the latter requiring inconvenient re-application at the start of the second session.Significance.AIRTrodes show great potential promise for integrating non-invasive BCIs into everyday settings due to their ability to support consistent BCI performances over extended periods. This technology could significantly enhance the usability of BCIs in real-world applications, facilitating continuous, all-day functionality that was previously challenging with existing electrode technologies. 
    more » « less
  3. Objective: We designed and validated a wireless, low-cost, easy-to-use, mobile, dry-electrode headset for scalp electroencephalography (EEG) recordings for closed-loop brain–computer (BCI) interface and internet-of-things (IoT) applications. Approach: The EEG-based BCI headset was designed from commercial off-the-shelf (COTS) components using a multi-pronged approach that balanced interoperability, cost, portability, usability, form factor, reliability, and closed-loop operation. Main Results: The adjustable headset was designed to accommodate 90% of the population. A patent-pending self-positioning dry electrode bracket allowed for vertical self-positioning while parting the user’s hair to ensure contact of the electrode with the scalp. In the current prototype, five EEG electrodes were incorporated in the electrode bracket spanning the sensorimotor cortices bilaterally, and three skin sensors were included to measure eye movement and blinks. An inertial measurement unit (IMU) provides monitoring of head movements. The EEG amplifier operates with 24-bit resolution up to 500 Hz sampling frequency and can communicate with other devices using 802.11 b/g/n WiFi. It has high signal–to–noise ratio (SNR) and common–mode rejection ratio (CMRR) (121 dB and 110 dB, respectively) and low input noise. In closed-loop BCI mode, the system can operate at 40 Hz, including real-time adaptive noise cancellation and 512 MB of processor memory. It supports LabVIEW as a backend coding language and JavaScript (JS), Cascading Style Sheets (CSS), and HyperText Markup Language (HTML) as front-end coding languages and includes training and optimization of support vector machine (SVM) neural classifiers. Extensive bench testing supports the technical specifications and human-subject pilot testing of a closed-loop BCI application to support upper-limb rehabilitation and provides proof-of-concept validation for the device’s use at both the clinic and at home. Significance: The usability, interoperability, portability, reliability, and programmability of the proposed wireless closed-loop BCI system provides a low-cost solution for BCI and neurorehabilitation research and IoT applications. 
    more » « less
  4. Although several well-preserved crania are known for the Mesozoic Eutriconodonta, three-dimensional reconstructions of the character-rich inner ear and basicranial region based on high-resolution computed tomography scans have previously only been published for the Late Jurassic Priacodon. Here we present a description of the petrosal and inner ear morphology of a triconodontid eutriconodontan from the Lower Cretaceous Cloverly Formation, which we provisionally assign to Astroconodon. The bony labyrinth of Astroconodon is plesiomorphic for mammaliaforms in lacking a primary osseous lamina, cribriform plate, and osseous cochlear ganglion canal. However, as in Priacodon and the zhangheotheriid Origolestes, Astroconodon has a secondary osseous lamina base that extends nearly the complete length of the cochlear canal. The cochlear canal is straighter in Astroconodon and other eutriconodontans compared to several basal mammaliaform clades (e.g., morganucodontans, docodontans), that exhibit varying degrees of cochlear canal curvature. The pars cochlearis of the petrosal was well vascularized in Astroconodon, exhibiting a network of venous canals that crossed the cochlea transversely on its ventral and dorsal aspects. Of particular note are several canals that passed along the base of the secondary osseous lamina. As in Priacodon and Origolestes, those canals do not show the extensive connections to the cochlear labyrinth as seen in the basal mammaliaforms Morganucodon and Borealestes. The inner ear of Astroconodon thus highlights the complex history of the mammaliaform cochlear canal, in which different clades appear to follow independent evolutionary trajectories and various key morphological features (e.g., cochlear canal length, curvature, vascularization and osseous supports for the basilar membrane) exhibit considerable homoplasy. 
    more » « less
  5. Electroencephalogram (EEG) recording is a widely used method to measure electrical activity in the brain. Rodent EEG brain recording not only is noninvasive but also has the advantages to accomplish full brain monitoring, compared with that of the invasive techniques like micro-electrode-arrays. In comparison to other noninvasive recording techniques, EEG is the only technique that can achieve sub-ms scale time resolution, which is essential to obtain causal relationship. In this work, we demonstrated a simple microfabrication process for developing a high-density polyimide-based rodent EEG recording cap. A 34-channel rodent electrode array with a total size of 11mmx8mm, individual electrode diameter 240μm and interconnect wire linewidth 35μm was designed and fabricated. For the fabrication process, we first deposit 350nm SiO2 on a silicon substrate. We then fabricate 6-7μm thick first layer polyimide caps with fingers and contact holes. Gold deposition and then lithography etching of 34 channel contact-electrodes and their interconnects were fabricated in the second step. The third step was to cover metal interconnects with a 10μm thick second layer polyimide, which was fabricated with photolithography before the final film released by HF undercutting etching of SiO2 layer. Then the fabricated EEG cap is interfaced with a commercial 34-channel female connector, which is soldered with 34-line wires. These wires are then connected to an ADC to record the EEG data in computer for post-processing. With polyimide, the EEG cap is biocompatible, and flexible which makes it suitable for good contact with rodent skulls. 
    more » « less