skip to main content


Title: DEBRIS AND VESSEL TRANSPORT DUE TO TSUNAMI CURRENTS IN PORTS AND HARBORS
The focus of the discussion will be on the debris and vessel transport capacity of the tsunami induced currents in ports and harbors. The tsunami events in the past 15 years proved that understanding these processes within the port/harbor basin has paramount importance in safety, recovery and the long-term resilience planning of the facilities; as all of these depend on the ability of structures or infrastructure to resist damage and the capability of harbors to become functional after the event. This endeavor requires an accurate representation of the flow field around the floating objects. Particularly, when the size of an average container ship is considered among with its’ fairly high draft to depth ratio, the interaction between flow and the vessels gets stronger. Therefore, in this study, the developed numerical tool, which is coupled with a 2HD nonlinear shallow water model, takes the interaction between the flow and the objects into account, and provides accurate results in a computationally efficient way. We will also present example simulation results of a numerical modelling study aimed at providing the quantitative guidance on maritime tsunami hazards in ports and harbors. This information can be used in pre-disaster recovery planning with the identification of the safe mooring spots or where the debris will likely accumulate after future tsunamis. Whilst the harbor’s ability to resist damage is a function of reducing the exposure to hazardous conditions as well as the maintaining/upgrading the structures/infrastructure within the harbors.  more » « less
Award ID(s):
1661052
NSF-PAR ID:
10108068
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Coastal Engineering Proceedings
Volume:
1
Issue:
36
ISSN:
0589-087X
Page Range / eLocation ID:
68
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During a tsunami or storm surge event, coastal infrastructure and ports are subject to a series of disparate physical hazards that can cause significant damage and loss of life. Among these, debris impact loading during inundation events is chaotic, complex, and thus far minimally understood, especially when considering the accumulation of individual debris into a large debris field. This work provides the results of a comprehensive experimental study of the impact and subsequent damming of chaotic debris fields, including more than 400 individual trials; this scope of this paper describes the experimental design and initial analysis of wave-driven debris-induced loading for select configurations. These data include both the impact phenomena and subsequent damming by debris accumulation and find strong correlation between increasing debris field density and high impact forces. High frequency impact forces and low frequency damming signals are considered via fast Fourier transform methods. Overall trends in wave-induced debris forcing from large debris fields are presented. 
    more » « less
  2. Abstract

    Tsunamis are rare, extreme events and cause significant damage to coastal infrastructure, which is often exacerbated by soil instability surrounding the structures. Simulating tsunamis in a laboratory setting is important to further understand soil instability induced by tsunami inundation processes. Laboratory simulations are difficult because the scale of such processes is very large, hence dynamic similitude cannot be achieved for small-scale models in traditional water-wave-tank facilities. The ability to control the body force in a centrifuge environment considerably reduces the mismatch in dynamic similitude. We review dynamic similitudes under a centrifuge condition for a fluid domain and a soil domain. A novel centrifuge apparatus specifically designed for exploring the physics of a tsunami-like flow on a soil bed is used to perform experiments. The present 1:40 model represents the equivalent geometric scale of a prototype soil field of 9.6 m deep, 21 m long, and 14.6 m wide. A laboratory facility capable of creating such conditions under the normal gravitational condition does not exist. With the use of a centrifuge, we are now able to simulate and measure tsunami-like loading with sufficiently high water pressure and flow velocities. The pressures and flow velocities in the model are identical to those of the prototype yielding realistic conditions of flow-soil interaction.

     
    more » « less
  3. null (Ed.)
    Inundation from storms like Hurricanes Katrina and Sandy, and the 2011 East Japan tsunami, have caused catastrophic damage to coastal communities. Prediction of surge, wave, and tsunami flow transformation over the built and natural environment is essential in determining survival and failure of near-coast structures. However, unlike earthquake and wind hazards, overland flow event loading and damage often vary strongly at a parcel scale in built-up coastal regions due to the influence of nearby structures and vegetation on hydrodynamic transformation. Additionally, overland flow hydrodynamics and loading are presently treated using a variety of simplified methods (e.g. bare earth method) which introduce significant uncertainty and/or bias. This study describes an extensive series of large-scale experiments to create a comprehensive dataset of detailed hydrodynamics and forces on an array of coastal structures (representing buildings of a community on a barrier island) subject to the variability of storm waves, surge, and tsunami, incorporating the effect of overland flow, 3D flow alteration due to near-structure shielding, vegetation, waterborne debris, and building damage.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/EDLiEK6b64E 
    more » « less
  4. Abstract

    This paper presents a new coupled urban change and hazard consequence model that considers population growth, a changing built environment, natural hazard mitigation planning, and future acute hazards. Urban change is simulated as an agent‐based land market with six agent types and six land use types. Agents compete for parcels with successful bids leading to changes in both urban land use—affecting where agents are located—and structural properties of buildings—affecting the building's ability to resist damage to natural hazards. IN‐CORE, an open‐source community resilience model, is used to compute damages to the built environment. The coupled model operates under constraints imposed by planning policies defined at the start of a simulation. The model is applied to Seaside, Oregon, a coastal community in the North American Pacific Northwest subject to seismic‐tsunami hazards emanating from the Cascadia Subduction Zone. Ten planning scenarios are considered including caps on the number of vacation homes, relocating community assets, limiting new development, and mandatory seismic retrofits. By applying this coupled model to the testbed community, we show that: (a) placing a cap on the number of vacation homes results in more visitors in damaged buildings, (b) that mandatory seismic retrofits do not reduce the number of people in damaged buildings when considering population growth, (c) polices diverge beyond year 10 in the model, indicating that many policies take time to realize their implications, and (d) the most effective policies were those that incorporated elements of both urban planning and enforced building codes.

     
    more » « less
  5. Abstract

    The effects of strong ground shaking on hillslope stability can persist for many years after a large earthquake, leading to an increase in the rates of post earthquake land sliding. The factors that control the rate of post‐earthquake land sliding are poorly constrained, hindering our ability to reliably forecast how landscapes and landslide hazards and risk evolve. To address this, we use a unique data set comprising high‐resolution terrestrial laser scans and airborne lidar captured during and after the 2010–2011 Canterbury Earthquake Sequence, New Zealand. This earthquake sequence triggered thousands of rock falls, and rock and debris avalanches (collectively referred to as “rockfall”), resulting in loss‐of‐life and damage to residential dwellings, commercial buildings and other infrastructure in the Port Hills of Christchurch, New Zealand. This unique data set spans 5 years and includes five significant earthquakes. We used these data to (a) quantify the regional‐scale “rockfall” rates in response to these earthquakes and the postearthquake decay in rockfall rates with time; and (b) investigate the site‐specific factors controlling the location of seismic and nonseismic rockfalls using frequency ratios and logistic regression techniques. We found that rockfall rates increased significantly in response to the initial earthquake that generated the strongest shaking in the sequence—The MW6.2 22 February 2011 event—Compared to the long‐term background rates derived from the dating of pre‐2010 talus piles at the toe of the slopes. Non seismic rockfall rates also increased immediately after the 22 February 2011 earthquake and decayed with time following a power‐law trend. About 50% of the decay back to the pre‐earthquake rockfall rates occurred within 1–5 years after the 22 February 2011 earthquake. Our results show that the short‐term decay in rockfall rates over time, after the initial earthquake, was attributed to the subsequent erosion of seismically damaged rock mass materials caused by environmental processes such as rain. For earthquake‐induced rockfall at the regional‐scale, the peak ground accelerations is the most significant variable in forecasting rockfall volume, followed by the relative height above the base of the slope. For both earthquake and non‐seismic conditions at the site‐specific scale, the probability of rockfall increases when the adjacent areas have failed previously, indicating that accrued damage preconditions localized areas of the slope for subsequent failure. Such preconditioning is a crucial factor driving subsequent rockfalls; that is, future rockfalls are likely to cluster near areas that failed in the past.

     
    more » « less