- Award ID(s):
- 1661052
- NSF-PAR ID:
- 10108068
- Date Published:
- Journal Name:
- Coastal Engineering Proceedings
- Volume:
- 1
- Issue:
- 36
- ISSN:
- 0589-087X
- Page Range / eLocation ID:
- 68
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This experimental project investigated the debris accumulation in front of structures during tsunamis (debris damming), which leads to an increase in the forces imposed by tsunami flow on structures. The study was conducted through the construction of a 1:20 geometric scale physical model. Tsunami-like waves were generated over an idealized slope and transported different shapes of multi-debris, representing shipping containers, over the flat test section to measure debris loadings on elevated column structures. The experiment optically measured the debris impact and damming process, along with the corresponding loads on the entire column structure using a Force Balance Plate and separately on an individual column in the front row using a load cell. This unique data set will help to understand the impact of various factors on debris-driven damming loads, including wave characteristics, specimen configurations, and debris shapes. This data will also help to develop and validate numerical models that predict the motion and dynamics of floating debris during extreme coastal events. This project is the outcome of “Collaborative Research: Experimental Quantification of Tsunami-driven Debris Damming on Structures” with collaborators from the University of Hawaii at Manoa, Louisiana State University, and Oregon State University.more » « less
-
During a tsunami or storm surge event, coastal infrastructure and ports are subject to a series of disparate physical hazards that can cause significant damage and loss of life. Among these, debris impact loading during inundation events is chaotic, complex, and thus far minimally understood, especially when considering the accumulation of individual debris into a large debris field. This work provides the results of a comprehensive experimental study of the impact and subsequent damming of chaotic debris fields, including more than 400 individual trials; this scope of this paper describes the experimental design and initial analysis of wave-driven debris-induced loading for select configurations. These data include both the impact phenomena and subsequent damming by debris accumulation and find strong correlation between increasing debris field density and high impact forces. High frequency impact forces and low frequency damming signals are considered via fast Fourier transform methods. Overall trends in wave-induced debris forcing from large debris fields are presented.more » « less
-
null (Ed.)On December 22, 2018, the eruption and flank collapse of the Anak Krakatau volcano generated a tsunami in the Sunda Strait causing catastrophic damage to uninhabited coastlines proximal to the source. Along the heavily populated shores of Banten and Lampung provinces in Java and Sumatra, tsunami waves caused severe damage, extensive inundation and more than 430 deaths. An international tsunami survey team (ITST) deployed 6 weeks after the event documented the tsunami effects including runup heights, flow depths and inundation distances, as well as sediment deposition patterns and impacts on infrastructure and the natural environment. The team also interviewed numerous eyewitnesses and educated residents about tsunami hazards.more » « less
-
null (Ed.)Inundation from storms like Hurricanes Katrina and Sandy, and the 2011 East Japan tsunami, have caused catastrophic damage to coastal communities. Prediction of surge, wave, and tsunami flow transformation over the built and natural environment is essential in determining survival and failure of near-coast structures. However, unlike earthquake and wind hazards, overland flow event loading and damage often vary strongly at a parcel scale in built-up coastal regions due to the influence of nearby structures and vegetation on hydrodynamic transformation. Additionally, overland flow hydrodynamics and loading are presently treated using a variety of simplified methods (e.g. bare earth method) which introduce significant uncertainty and/or bias. This study describes an extensive series of large-scale experiments to create a comprehensive dataset of detailed hydrodynamics and forces on an array of coastal structures (representing buildings of a community on a barrier island) subject to the variability of storm waves, surge, and tsunami, incorporating the effect of overland flow, 3D flow alteration due to near-structure shielding, vegetation, waterborne debris, and building damage.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/EDLiEK6b64Emore » « less
-
Abstract Tsunamis are rare, extreme events and cause significant damage to coastal infrastructure, which is often exacerbated by soil instability surrounding the structures. Simulating tsunamis in a laboratory setting is important to further understand soil instability induced by tsunami inundation processes. Laboratory simulations are difficult because the scale of such processes is very large, hence dynamic similitude cannot be achieved for small-scale models in traditional water-wave-tank facilities. The ability to control the body force in a centrifuge environment considerably reduces the mismatch in dynamic similitude. We review dynamic similitudes under a centrifuge condition for a fluid domain and a soil domain. A novel centrifuge apparatus specifically designed for exploring the physics of a tsunami-like flow on a soil bed is used to perform experiments. The present 1:40 model represents the equivalent geometric scale of a prototype soil field of 9.6 m deep, 21 m long, and 14.6 m wide. A laboratory facility capable of creating such conditions under the normal gravitational condition does not exist. With the use of a centrifuge, we are now able to simulate and measure tsunami-like loading with sufficiently high water pressure and flow velocities. The pressures and flow velocities in the model are identical to those of the prototype yielding realistic conditions of flow-soil interaction.