Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018
More Like this
-
Abstract Past and present anthropogenic mercury (Hg) release to ecosystems causes neurotoxicity and cardiovascular disease in humans with an estimated economic cost of $117 billion USD annually. Humans are primarily exposed to Hg via the consumption of contaminated freshwater and marine fish. The UNEP Minamata Convention on Hg aims to curb Hg release to the environment and is accompanied by global Hg monitoring efforts to track its success. The biogeochemical Hg cycle is a complex cascade of release, dispersal, transformation and bio-uptake processes that link Hg sources to Hg exposure. Global change interacts with the Hg cycle by impacting the physical, biogeochemical and ecological factors that control these processes. In this review we examine how global change such as biome shifts, deforestation, permafrost thaw or ocean stratification will alter Hg cycling and exposure. Based on past declines in Hg release and environmental levels, we expect that future policy impacts should be distinguishable from global change effects at the regional and global scales.more » « less
-
Abstract. Mercury (Hg) is emitted to the atmosphere mainly as volatile elemental Hg0. Oxidation to water-soluble HgII plays a major role in Hg deposition to ecosystems. Here, we implement a new mechanism for atmospheric Hg0∕HgII redox chemistry in the GEOS-Chem global model and examine the implications for the global atmospheric Hg budget and deposition patterns. Our simulation includes a new coupling of GEOS-Chem to an ocean general circulation model (MITgcm), enabling a global 3-D representation of atmosphere–ocean Hg0∕HgII cycling. We find that atomic bromine (Br) of marine organobromine origin is the main atmospheric Hg0 oxidant and that second-stage HgBr oxidation is mainly by the NO2 and HO2 radicals. The resulting chemical lifetime of tropospheric Hg0 against oxidation is 2.7 months, shorter than in previous models. Fast HgII atmospheric reduction must occur in order to match the ∼ 6-month lifetime of Hg against deposition implied by the observed atmospheric variability of total gaseous mercury (TGM ≡ Hg0+HgII(g)). We implement this reduction in GEOS-Chem as photolysis of aqueous-phase HgII–organic complexes in aerosols and clouds, resulting in a TGM lifetime of 5.2 months against deposition and matching both mean observed TGM and its variability. Model sensitivity analysis shows that the interhemispheric gradient of TGM, previously used to infer a longer Hg lifetime against deposition, is misleading because Southern Hemisphere Hg mainly originates from oceanic emissions rather than transport from the Northern Hemisphere. The model reproduces the observed seasonal TGM variation at northern midlatitudes (maximum in February, minimum in September) driven by chemistry and oceanic evasion, but it does not reproduce the lack of seasonality observed at southern hemispheric marine sites. Aircraft observations in the lowermost stratosphere show a strong TGM–ozone relationship indicative of fast Hg0 oxidation, but we show that this relationship provides only a weak test of Hg chemistry because it is also influenced by mixing. The model reproduces observed Hg wet deposition fluxes over North America, Europe, and China with little bias (0–30%). It reproduces qualitatively the observed maximum in US deposition around the Gulf of Mexico, reflecting a combination of deep convection and availability of NO2 and HO2 radicals for second-stage HgBr oxidation. However, the magnitude of this maximum is underestimated. The relatively low observed Hg wet deposition over rural China is attributed to fast HgII reduction in the presence of high organic aerosol concentrations. We find that 80% of HgII deposition is to the global oceans, reflecting the marine origin of Br and low concentrations of organic aerosols for HgII reduction. Most of that deposition takes place to the tropical oceans due to the availability of HO2 and NO2 for second-stage HgBr oxidation.more » « less
-
Abstract Mercury (Hg) is a naturally occurring element that has been greatly enriched in the environment by human activities like mining and fossil fuel combustion. Despite commonalities in some carbon dioxide (CO2) and Hg emission sources, the implications of long‐range climate scenarios for anthropogenic Hg emissions have yet to be explored. Here, we present comprehensive projections of anthropogenic Hg emissions extending to the year 2300 and evaluate impacts on global atmospheric Hg deposition. Projections are based on four Shared Socioeconomic Pathways (SSPs) ranging from sustainable reductions in resource and energy intensity to rapid economic growth driven by abundant fossil fuel exploitation. There is a greater than two‐fold difference in cumulative anthropogenic Hg emissions between the lower‐bound (110 Gg) and upper‐bound (235 Gg) scenarios. Hg releases to land and water are approximately six times those of direct emissions to air (600–1,470 Gg). At their peak, anthropogenic Hg emissions reach 2,200–2,600 Mg a−1sometime between 2010 (baseline) and 2030, depending on the SSP scenario. Coal combustion is the largest determinant of differences in Hg emissions among scenarios. Decoupling of Hg and CO2emission sources occurs under low‐to mid‐range scenarios, though contributions from artisanal and small‐scale gold mining remain uncertain. Future Hg emissions may have lower gaseous elemental Hg (Hg0) and higher divalent Hg (HgII), resulting in a higher fraction of locally sourced Hg deposition. Projected reemissions of previously deposited anthropogenic Hg follow a similar temporal trajectory to primary emissions, amplifying the benefits of primary Hg emission reductions under the most stringent mitigation scenarios.more » « less
An official website of the United States government

